login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259437
a(n) = Sum_{k=0..n} p(k)^n, where p(k) is the partition function A000041.
2
1, 2, 6, 37, 724, 20209, 1905630, 191250531, 57659285287, 20931112851787, 17697850924585423, 17720783665888137843, 44421728434157120665320, 117208746422032553556330253, 679595843556865572365153402674, 4907378683411420479410336076467628
OFFSET
0,2
FORMULA
a(n) ~ p(n)^n ~ exp(1/24 - 3/(4*Pi^2) - (72+Pi^2)*sqrt(n)/(24*sqrt(6)*Pi) + sqrt(2/3)*Pi*n^(3/2)) / (3^(n/2) * 4^n * n^n).
MATHEMATICA
Table[Sum[PartitionsP[k]^n, {k, 0, n}], {n, 0, 15}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 27 2015
STATUS
approved