login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259418
Primes p such that p plus the cube of sum of digits of p is a perfect square.
2
17, 131, 863, 1031, 1481, 3011, 3449, 3881, 3923, 5903, 16649, 17921, 22643, 26249, 26687, 30113, 30809, 33629, 48473, 56009, 58049, 60623, 70163, 71933, 75521, 94109, 109331, 129209, 134129, 155387, 179909, 193601, 194003, 195401, 219647, 239807, 258233, 263411
OFFSET
1,1
COMMENTS
All the terms are congruent to 2 (mod 3).
LINKS
EXAMPLE
a(2) = 131 is prime: 131 + (1 + 3 + 1)^3 = 256 = 16^2.
a(3) = 863 is prime: 863 + (8 + 6 + 3)^3 = 5776 = 76^2.
MATHEMATICA
Select[Prime[Range[100000]], IntegerQ[Sqrt[# + Plus @@ (IntegerDigits[#])^3]] &]
PROG
(PARI) forprime(p=1, 10^6, if(issquare(sumdigits(p)^3 + p), print1(p, ", ")))
(Magma) [p: p in PrimesUpTo(2*10^6) | IsSquare(&+Intseq(p)^3 + p)] ;
CROSSREFS
KEYWORD
nonn,base
AUTHOR
K. D. Bajpai, Jun 26 2015
STATUS
approved