login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259419
A Somos-4 like sequence connected with the elliptic curve y^2 + y = x^3 - 3x + 4.
1
1, 2, 1, -3, -7, -17, 2, 101, 247, 571, -1669, -13766, -43101, -205897, 1640929, 8217293, 101727662, 173114917, -5439590147, -70987557871, -993401657957, 2105332714614, 208894282701569, 3110590234593151, 37334338699443371, -891470356091782993, -33292234868859857114
OFFSET
0,2
COMMENTS
All the terms of the sequence are integers. Moreover, a(n)^2 is the denominator of the x-coordinate of (2n+3)P, where P = (4,7) is the point on the elliptic curve E: y^2 + y = x^3 - 3x + 4.
LINKS
Alexi Block Gorman, Tyler Genao, Heesu Hwang, Noam Kantor, Sarah Parsons, and Jeremy Rouse, The density of primes dividing a particular non-linear recurrence sequence, arXiv:1508.02464 [math.NT], 2015.
Clark Kimberling, Strong divisibility sequences and some conjectures, Fib. Quart., 17 (1979), 13-17.
PUMaC, PUMac 2015 Power Round. See page 21, denoted by d_n.
FORMULA
a(n) = (a(n-1)*a(n-3) - a(n-2)^2)/a(n-4) if n is not 2 mod 3, and a(n) = (a(n-1)*a(n-3) - 3*a(n-2)^2)/a(n-4) if n is 2 mod 3.
a(n) = - a(-3-n) for all n in Z. - Michael Somos, Aug 13 2015
a(n)*a(n+7) = -1*a(n+1)*a(n+6) +5*a(n+3)*a(n+4) for all n in Z. - Michael Somos, Aug 13 2015
a(n)*a(n+8) = -4*a(n+2)*a(n+6) +5*a(n+3)*a(n+5) for all n in Z. - Michael Somos, Aug 13 2015
Let t(n) be a strong elliptic divisibility sequence as given in [Kimberling, p. 16] where x = 5^(1/4), y = 3^(1/3), z = 1. Then a(n) = t(2*n + 3) / if( 3|n, y, 1). - Michael Somos, Aug 13 2015
EXAMPLE
If P = (4,7), then (2*4+3)*P = (-104/49, 181/343). The denominator of the x-coordinate is 49 = a(4)^2.
MATHEMATICA
a[ n_] := Module[ {v, m, s = 1}, m = If[ n < -1, s = -1; -3 - n, n] + 5; v = Join[{-2, -1, -1, 1, 1, 2, 1}, Table[0, {m - 7}]]; Do[ v[[k]] = (5 v[[k - 3]] v[[k - 4]] - v[[k - 1]] v[[k - 6]]) / v[[k - 7]], {k, 8, m}]; s v[[m]]]; (* Michael Somos, Aug 13 2015 *)
PROG
(PARI) a = vector(99); a[1]=2; a[2]=1; a[3] = -3; a[4] = -7; for(n=5, #a, if(Mod(n, 3)==Mod(2, 3), a[n]=(a[n-1]*a[n-3]-3*a[n-2]^2)/a[n-4], a[n]=(a[n-1]*a[n-3]-a[n-2]^2)/a[n-4])); a
(PARI) {a(n) = my(v, s=1); if( n<-1, n = -3-n; s = -1); n += 5; v = concat( [-2, -1, -1, 1, 1, 2, 1], vector( max(0, n-7))); for(k=8, n, v[k] = (5 * v[k-3] * v[k-4] - v[k-1] * v[k-6]) / v[k-7]); s * v[n]}; /* Michael Somos, Aug 13 2015 */
CROSSREFS
Cf. A006720.
Sequence in context: A137766 A294620 A010758 * A019224 A298096 A053190
KEYWORD
easy,sign
AUTHOR
Jeremy Rouse, Jun 26 2015
STATUS
approved