login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259395
a(n) = -3*n^2*(n-1)^4*(n+1)*(11*n^3+49*n^2-439*n+171).
3
0, 0, 15228, 705024, 1885680, -66355200, -792382500, -4986842112, -22516232256, -81696522240, -252908835300, -693126720000, -1723987588752, -3961019252736, -8517765880260, -17315965900800, -33541737120000, -62298041352192, -111515651966916, -193198552634880
OFFSET
0,3
LINKS
M. P. Delest, Generating functions for column-convex polyominoes, J. Combin. Theory Ser. A 48 (1988), no. 1, pp. 12-31. See expression D in Theorem 16 page 29.
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
G.f.: 324*x^2*(47+1659*x - 15531*x^2 - 156895*x^3 - 216255*x^4 - 17547*x^5 + 31451*x^6 + 3471*x^7) / (1-x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11).
MAPLE
A259395:=n->-3*n^2*(n-1)^4*(n+1)*(11*n^3+49*n^2-439*n+171): seq(A259395(n), n=0..25); # Wesley Ivan Hurt, Jun 29 2015
MATHEMATICA
Table[-3 n^2 (n - 1)^4 (n + 1) (11 n^3 + 49 n^2 - 439 n + 171), {n, 0, 23}]
PROG
(Magma) [-3*n^2*(n-1)^4*(n+1)*(11*n^3+49*n^2-439*n+171): n in [0..20]];
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Vincenzo Librandi, Jun 26 2015
STATUS
approved