login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = -3*n^2*(n-1)^4*(n+1)*(11*n^3+49*n^2-439*n+171).
3

%I #11 Sep 08 2022 08:46:13

%S 0,0,15228,705024,1885680,-66355200,-792382500,-4986842112,

%T -22516232256,-81696522240,-252908835300,-693126720000,-1723987588752,

%U -3961019252736,-8517765880260,-17315965900800,-33541737120000,-62298041352192,-111515651966916,-193198552634880

%N a(n) = -3*n^2*(n-1)^4*(n+1)*(11*n^3+49*n^2-439*n+171).

%H M. P. Delest, <a href="http://dx.doi.org/10.1016/0097-3165(88)90071-4">Generating functions for column-convex polyominoes</a>, J. Combin. Theory Ser. A 48 (1988), no. 1, pp. 12-31. See expression D in Theorem 16 page 29.

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).

%F G.f.: 324*x^2*(47+1659*x - 15531*x^2 - 156895*x^3 - 216255*x^4 - 17547*x^5 + 31451*x^6 + 3471*x^7) / (1-x)^11.

%F a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11).

%p A259395:=n->-3*n^2*(n-1)^4*(n+1)*(11*n^3+49*n^2-439*n+171): seq(A259395(n), n=0..25); # _Wesley Ivan Hurt_, Jun 29 2015

%t Table[-3 n^2 (n - 1)^4 (n + 1) (11 n^3 + 49 n^2 - 439 n + 171), {n, 0, 23}]

%o (Magma) [-3*n^2*(n-1)^4*(n+1)*(11*n^3+49*n^2-439*n+171): n in [0..20]];

%Y Cf. A001105, A005435, A259364.

%K sign,easy

%O 0,3

%A _Vincenzo Librandi_, Jun 26 2015