|
|
A259280
|
|
a(n) is the minimal sum of a positive integer sequence of length n with no duplicate substrings of length greater than 1.
|
|
7
|
|
|
1, 2, 4, 5, 7, 9, 11, 14, 16, 19, 21, 24, 27, 30, 33, 36, 40, 43, 47, 50, 54, 57, 61, 65, 69, 73, 77, 81, 85, 90, 94, 99, 103, 108, 112, 117, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 172, 177, 183, 188, 194, 199, 205, 210, 216, 221, 227, 233, 239, 245
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The lexicographically earliest positive integer sequence with no duplicate substrings is [1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, ...].
Note: Trivial substring of length 1 are allowed to recur, i.e., duplicate terms are permitted.
Non-examples of positive integer sequences with no duplicate substrings are
[1, 1, 1] (the substring [1, 1] occurs twice) and [1, 2, 3, 1, 2] (the substring [1, 2] occurs twice).
|
|
LINKS
|
|
|
FORMULA
|
a(1) = 1, a(n) = ceiling((n + 1 + A060432(n - 1))/2) for n > 1.
|
|
EXAMPLE
|
Lexicographically earliest examples:
a(1) = 1 via [1]
a(2) = 2 via [1, 1]
a(3) = 4 via [1, 1, 2]
a(4) = 5 via [1, 1, 2, 1]
a(5) = 7 via [1, 1, 2, 2, 1]
a(6) = 9 via [1, 1, 2, 1, 3, 1]
a(7) = 11 via [1, 1, 2, 2, 1, 3, 1]
a(8) = 14 via [1, 1, 2, 1, 3, 1, 4, 1]
a(9) = 16 via [1, 1, 2, 1, 3, 2, 2, 3, 1]
a(10) = 19 via [1, 1, 2, 1, 3, 2, 2, 3, 3, 1]
a(11) = 21 via [1, 1, 2, 1, 3, 2, 2, 3, 1, 4, 1]
a(12) = 24 via [1, 1, 2, 1, 3, 2, 2, 3, 3, 1, 4, 1]
a(13) = 27 via [1, 1, 2, 1, 3, 1, 4, 2, 2, 3, 2, 4, 1]
|
|
PROG
|
(Ruby)
def a259280(n)
lower_bound = 0.5 * (a060432(n - 1) + n + 1)
lower_bound.ceil
end
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|