login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259281
Decimal expansion of Sum'_{(x,y,z)=-infinity..infinity} 1/(x^2+y^2+z^2)^2, where the 'prime' indicates that the term x=y=z=0 is to be left out.
1
1, 6, 5, 3, 2, 3, 1, 5, 9, 5, 9, 7, 6, 1, 6, 6, 9, 6, 4, 3, 8, 9, 2, 7, 0, 4, 5, 9, 2, 8, 8, 7, 8, 5, 1, 7, 4, 3, 8, 3, 4, 1, 2, 9, 0, 7, 0, 2, 5, 5, 1, 8, 6, 8, 8, 6, 1, 1, 7, 7, 9, 3, 6, 5, 9, 5, 6, 0, 2, 7, 0, 3, 0, 9, 4, 9, 5, 1, 0, 8, 5, 2, 3, 0, 7, 7, 8
OFFSET
2,2
LINKS
M. Kontsevich and D. Zagier, Periods, Institut des Hautes Etudes Scientifiques 2001 IHES/M/01/22 p. 25.
Jon E. Schoenfield, Magma program
I. J. Zucker, Madelung constants and lattice sums for invariant cubic lattice complexes and certain tetragonal structures, J. Phys. A: Math. Gen. 8 (1975) 1734, Table 4, s=2, a(2s).
EXAMPLE
16.532315959761669643892704592887851743834129...
MATHEMATICA
(* This script gives only 10 correct digits *) s1 = NSum[(-2 + Pi*x*(Coth[Pi*x] + Pi*x*Csch[Pi*x]^2))/(4*x^4), {x, 1, Infinity} ]; s2 = NSum[-((Csch[Pi*x]^2*(2 + 2*Pi^2*x^2 - 2*Cosh[2*Pi*x] + Pi*x*Sinh[2*Pi*x]))/(16*x^4)), {x, 1, Infinity} ]; f[y_?NumericQ] := NSum[(Pi*Coth[Pi*Sqrt[x^2 + y^2]])/(4*(x^2 + y^2)^(3/2)), {x, 1, Infinity} ]; s3 = NSum[f[y], {y, 1, Infinity} ]; g[y_?NumericQ] := NSum[2*((Pi^2*x^2*Csch[Pi*Sqrt[x^2 + y^2]]^2)/(4*(x^2 + y^2)^2)), {x, 1, Infinity} ]; s4 = NSum[g[y], {y, 1, Infinity} ]; s = Pi^4/15 + 12*s1 + 8*(s2 + s3 + s4); RealDigits[s, 10, 10] // First
CROSSREFS
Sequence in context: A245632 A356983 A158038 * A153330 A225661 A225662
KEYWORD
nonn,cons
AUTHOR
STATUS
approved