OFFSET
1,1
COMMENTS
The subsequence of cubes in the sequence starts 505^3, 535^3, 709^3, 865^3, 1033^3, 1037^3, 1067^3, 1133^3, 1513^3, ... See A258262.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
FORMULA
By a counting argument a(n) >> n log^3 n and hence the sequence is of density 0. - Charles R Greathouse IV, Aug 09 2021
EXAMPLE
2^3+2^3+2^3=24. 2^3+2^3+3^3=43. 2^3+3^3+3^3=62. 3^3+3^3+3^3=81.
MAPLE
MATHEMATICA
lim = 15; Take[Sort@ DeleteDuplicates[Total /@ (Tuples[Prime@ Range@ lim, 3]^3)], 3 lim] (* Michael De Vlieger, Jun 12 2015 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, fromList)
import qualified Data.Set as Set (union)
import qualified Data.List.Ordered as List (union)
a258865 n = a258865_list !! (n-1)
a258865_list = tail $ f (singleton 1) 1 [] [] a030078_list where
f s z vs qcs pcs'@(pc:pcs)
| m < z = m : f s' z vs qcs pcs'
| otherwise = f (Set.union s $ fromList $ map (+ pc) ws)
pc ws (pc:qcs) pcs
where ws = List.union vs $ map (+ pc) (pc : qcs)
(m, s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 13 2015
(PARI) list(lim)=my(v=List(), P=apply(p->p^3, primes(sqrtnint(lim\=1, 3)))); foreach(P, p, foreach(P, q, my(s=p+q, t); for(i=1, #P, t=s+P[i]; if(t>lim, break); listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Aug 09 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jun 12 2015
STATUS
approved