login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258865
Numbers that are a sum of the cubes of three primes.
4
24, 43, 62, 81, 141, 160, 179, 258, 277, 359, 375, 378, 397, 476, 495, 593, 694, 713, 811, 1029, 1347, 1366, 1385, 1464, 1483, 1581, 1682, 1701, 1799, 2017, 2213, 2232, 2251, 2330, 2349, 2447, 2548, 2567, 2665, 2670, 2689, 2787, 2883, 3005, 3536, 3555
OFFSET
1,1
COMMENTS
The subsequence of cubes in the sequence starts 505^3, 535^3, 709^3, 865^3, 1033^3, 1037^3, 1067^3, 1133^3, 1513^3, ... See A258262.
LINKS
FORMULA
a(n) = A030078(i)+A030078(j)+A030078(k) for some triple (i,j,k).
By a counting argument a(n) >> n log^3 n and hence the sequence is of density 0. - Charles R Greathouse IV, Aug 09 2021
EXAMPLE
2^3+2^3+2^3=24. 2^3+2^3+3^3=43. 2^3+3^3+3^3=62. 3^3+3^3+3^3=81.
MAPLE
A258865 := proc(lim)
local a, p, q, r ;
a := {} ;
p := 2 ;
while p^3 < lim do
q := p ;
while p^3 +q^3< lim do
r := q ;
while p^3+q^3+r^3 <= lim do
a := a union {p^3+q^3+r^3} ;
r := nextprime(r) ;
end do:
q := nextprime(q) ;
end do:
p := nextprime(p) ;
end do ;
a ;
end proc:
A258865(30000) ;
MATHEMATICA
lim = 15; Take[Sort@ DeleteDuplicates[Total /@ (Tuples[Prime@ Range@ lim, 3]^3)], 3 lim] (* Michael De Vlieger, Jun 12 2015 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, fromList)
import qualified Data.Set as Set (union)
import qualified Data.List.Ordered as List (union)
a258865 n = a258865_list !! (n-1)
a258865_list = tail $ f (singleton 1) 1 [] [] a030078_list where
f s z vs qcs pcs'@(pc:pcs)
| m < z = m : f s' z vs qcs pcs'
| otherwise = f (Set.union s $ fromList $ map (+ pc) ws)
pc ws (pc:qcs) pcs
where ws = List.union vs $ map (+ pc) (pc : qcs)
(m, s') = deleteFindMin s
-- Reinhard Zumkeller, Jun 13 2015
(PARI) list(lim)=my(v=List(), P=apply(p->p^3, primes(sqrtnint(lim\=1, 3)))); foreach(P, p, foreach(P, q, my(s=p+q, t); for(i=1, #P, t=s+P[i]; if(t>lim, break); listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Aug 09 2021
CROSSREFS
Cf. A030078, A258262 (subsequence).
Sequence in context: A087093 A118299 A302360 * A072096 A055480 A322843
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jun 12 2015
STATUS
approved