|
|
A258331
|
|
Sum of the cubes of the divisors of n^3.
|
|
1
|
|
|
1, 585, 20440, 299593, 1968876, 11957400, 40471600, 153391689, 402321277, 1151792460, 2359720584, 6123680920, 10609328380, 23675886000, 40243825440, 78536544841, 118612018980, 235357947045, 322734750520, 589861467468, 827239504000, 1380436541640
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
Multiplicative with a(p^e) = (p^(9*e + 3) - 1)/(p^3 - 1).
Sum_{k=1..n} a(k) ~ c * n^10, where c = (zeta(10)/10) * Product_{p prime} (1 + 1/p^4 + 1/p^7) = 0.1087440273... . (End)
|
|
EXAMPLE
|
For n=2, the divisors of 2^3 = 8 are 1, 2, 4 and 8. The sum of the cubes of these divisors is 1^3+2^3+4^3+8^3 = 585, therefore a(2) = 585.
|
|
MAPLE
|
|
|
MATHEMATICA
|
Table[DivisorSigma[3, n^3], {n, 50}]
|
|
PROG
|
(Python)
from math import prod
from sympy import factorint
def A258331(n): return prod((p**((3*e+1)*3)-1)//(p**3-1) for p, e in factorint(n).items()) # Chai Wah Wu, Oct 25 2023
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,mult
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|