login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258099
Expansion of ( psi(x^3) * phi(-x^3) / (psi(x) * f(-x^2)) )^2 in powers of x where phi(), psi(), f() are Ramanujan theta functions.
3
1, -2, 5, -12, 26, -50, 92, -168, 295, -496, 818, -1332, 2126, -3324, 5126, -7824, 11793, -17548, 25857, -37788, 54734, -78578, 111968, -158496, 222842, -311224, 432095, -596676, 819504, -1119624, 1522282, -2060448, 2776514, -3725294, 4978142, -6626988
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/3) * (eta(q) * eta(q^3) * eta(q^6) / eta(q^2)^3)^2 in powers of q.
Euler transform of period 6 sequence [ -2, 4, -4, 4, -2, 0, ...].
G.f.: Product_{k>0} (1 - x^k + x^(2*k))^2 * (1 + x^k + x^(2*k))^4 / (1 + x^k)^4.
a(n) = A258100(3*n + 1).
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n/3)) / (2 * 3^(9/4) * n^(3/4)). - Vaclav Kotesovec, Jun 06 2018
EXAMPLE
G.f. = 1 - 2*x + 5*x^2 - 12*x^3 + 26*x^4 - 50*x^5 + 92*x^6 - 168*x^7 + ...
G.f. = q - 2*q^4 + 5*q^7 - 12*q^10 + 26*q^13 - 50*q^16 + 92*q^19 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x] * QPochhammer[ x^3] * QPochhammer[ x^6] / QPochhammer[ x^2]^3)^2, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^3 + A) * eta(x^6 + A) / eta(x^2 + A)^3)^2, n))};
CROSSREFS
Sequence in context: A214610 A338792 A221720 * A132977 A027927 A221948
KEYWORD
sign
AUTHOR
Michael Somos, May 20 2015
STATUS
approved