login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221720
An avoidance sequence for a pair of tree patterns that is not the avoidance sequence for any set of permutations.
1
1, 1, 2, 5, 12, 26, 49, 83, 129, 187, 257, 339, 433, 539, 657, 787, 929, 1083, 1249, 1427, 1617, 1819, 2033, 2259, 2497, 2747, 3009, 3283, 3569, 3867, 4177, 4499, 4833, 5179, 5537, 5907, 6289, 6683, 7089, 7507, 7937, 8379, 8833, 9299, 9777, 10267, 10769, 11283, 11809, 12347
OFFSET
1,3
LINKS
Dairyko, Michael; Tyner, Samantha; Pudwell, Lara; Wynn, Casey. Non-contiguous pattern avoidance in binary trees. Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.
M. Dairyko, S. Tyner, L. Pudwell and C. Wynn, Non-contiguous pattern avoidance in binary trees, 2012, arXiv:1203.0795 [math.CO], p. 17 (Class B).
FORMULA
G.f. x*(1-2*x+2*x^2+x^3+2*x^4+3*x^5+2*x^6+2*x^7+x^8)/(1-x)^3.
a(n) = 6*n^2 - 56*n + 147 for n>6. [Bruno Berselli, Feb 05 2013]
MATHEMATICA
CoefficientList[Series[(1 - 2 x + 2 x^2 + x^3 + 2 x^4 + 3 x^5 + 2 x^6 + 2 x^7 + x^8) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *)
LinearRecurrence[{3, -3, 1}, {1, 1, 2, 5, 12, 26, 49, 83, 129}, 50] (* Harvey P. Dale, Sep 04 2021 *)
CROSSREFS
Sequence in context: A287141 A214610 A338792 * A258099 A132977 A027927
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 01 2013
STATUS
approved