login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257995
Forests of binary shrubs on 3n vertices avoiding 321.
1
1, 2, 37, 866, 23285, 679606, 20931998, 669688835, 22040134327, 741386199872, 25376258521393, 880977739374392, 30946637156662975, 1097929752363923490, 39284677690031136567, 1415992852373003788459
OFFSET
0,2
COMMENTS
We define a shrub as a rooted, ordered tree with the only vertices being the root and leaves. We then label our shrubs' vertices with integers such that each child has a larger label than its parent. We associate a permutation to a tree by reading the labels from left to right by levels, starting with the root. A forest is an ordered collection of trees where all vertices in the forest have distinct labels. We associate a permutation to a forest by reading the permutation associated to each tree and then concatenating. We then enumerate labeled forests of binary shrubs whose associated permutation avoids 321.
LINKS
D Bevan, D Levin, P Nugent, J Pantone, L Pudwell, Pattern avoidance in forests of binary shrubs, arXiv preprint arXiv:1510:08036, 2015
MAPLE
gf := RootOf(_Z^10*z^10+18*_Z^9*z^9+123*_Z^8*z^8+(-3*z^8+420*z^7+54*z^6)*_Z^7+(-36*z^7+751*z^6+486*z^5)*_Z^6+(-138*z^6+354*z^5+1053*z^4)*_Z^5+(3*z^6-228*z^5-213*z^4+162*z^3+729*z^2)*_Z^4+(18*z^5-215*z^4+2*z^3-360*z^2)*_Z^3+(15*z^4+24*z^3-71*z^2-54*z)*_Z^2+(-z^4+24*z^3-8*z^2+54*z-1)*_Z+4*z^2+4*z+1)^(1/2):
seq(coeff(series(gf, z, 21), z, i), i=0..20);
MATHEMATICA
b[k_]:=k(k+1)/2; n[k_]:=n[k]=Join[{b[k+1], b[k+1]-1}, Table[b[i], {i, k, 1, -1}], {1}]; v[1]={1, 0, 1}; v[k_]:=v[k]=Module[{s=MapIndexed[#1n[First@#2]&, v[k-1]]}, Table[Total[If[i>Length@#, 0, #[[i]]]&/@s], {i, Length@Last@s}]]; a[k_]:=a[k]=Total@v[k]; Array[a, 20] (* David Bevan, Oct 27 2015 *)
CROSSREFS
A001764, A002293, A060941 and A144097 enumerate binary shrubs avoiding other patterns of length 3.
Sequence in context: A123216 A307318 A058245 * A234971 A139108 A165697
KEYWORD
nonn
AUTHOR
Manda Riehl, May 15 2015
STATUS
approved