login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257842
Semiprimes p*q such that R(p*q) = R(p)*R(q), where R = A004086 = reverse digits.
1
4, 6, 9, 22, 26, 33, 39, 46, 55, 62, 69, 77, 82, 86, 93, 121, 143, 169, 187, 202, 206, 226, 253, 262, 299, 303, 309, 339, 341, 393, 422, 446, 451, 466, 473, 482, 505, 583, 622, 626, 633, 662, 669, 671, 699, 707, 781, 802, 842, 862, 866, 886, 933, 939, 961
OFFSET
1,1
COMMENTS
A subsequence of A161600. Almost all terms with less than 4 digits are either multiples of 2 or 3 or of 11.
LINKS
MAPLE
N:= 1000: # to get all terms <= N
digrev:= proc(n) local L, i;
L:= convert(n, base, 10);
add(L[-i]*10^(i-1), i=1..nops(L))
end proc:
F:= proc(p, q) if digrev(p*q)=digrev(p)*digrev(q) then p*q else NULL fi end proc:
sort([seq(seq(F(Primes[i], q), q = select(`<=`, Primes[i..-1], N/Primes[i])), i=1..nops(Primes))]); # Robert Israel, May 14 2015
MATHEMATICA
f[n_]:=FactorInteger[n][[1, 1]]; g[n_]:=FromDigits[Reverse[IntegerDigits[n]]]; Select[Range@1000, PrimeOmega[#]==2&&g[f[#]*#/f[#]]==g[f[#]]*g[#/f[#]]&] (* Ivan N. Ianakiev, May 14 2015 *)
PROG
(PARI) is(n)=bigomega(n)==2&&!eval(concat(Vecrev(Str(n"-"vecmin(n=factor(n)[, 1])"*"vecmax(n)))))
CROSSREFS
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, May 11 2015
STATUS
approved