OFFSET
1,1
COMMENTS
Positive integers x in the solutions to 2*x^2-46*y^2-1012*y-7590 = 0.
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,48,0,-1).
FORMULA
a(n) = 48*a(n-2)-a(n-4).
G.f.: -46*x*(x-1)*(x+2)*(2*x+1) / (x^4-48*x^2+1).
EXAMPLE
92 is in the sequence because 92^2 = 8464 = 7^2+8^2+...+29^2.
MATHEMATICA
LinearRecurrence[{0, 48, 0, -1}, {92, 138, 4278, 6532}, 30] (* Vincenzo Librandi, May 11 2015 *)
PROG
(PARI) Vec(-46*x*(x-1)*(x+2)*(2*x+1)/(x^4-48*x^2+1) + O(x^100))
(Magma) I:=[92, 138, 4278, 6532]; [n le 4 select I[n] else 48*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, May 11 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, May 07 2015
STATUS
approved