login
A257761
Positive integers whose square is the sum of 23 consecutive squares.
12
92, 138, 4278, 6532, 205252, 313398, 9847818, 15036572, 472490012, 721442058, 22669672758, 34614182212, 1087671802372, 1660759304118, 52185576841098, 79681832415452, 2503820016570332, 3823067196637578, 120131175218534838, 183427543606188292
OFFSET
1,1
COMMENTS
Positive integers x in the solutions to 2*x^2-46*y^2-1012*y-7590 = 0.
FORMULA
a(n) = 48*a(n-2)-a(n-4).
G.f.: -46*x*(x-1)*(x+2)*(2*x+1) / (x^4-48*x^2+1).
EXAMPLE
92 is in the sequence because 92^2 = 8464 = 7^2+8^2+...+29^2.
MATHEMATICA
LinearRecurrence[{0, 48, 0, -1}, {92, 138, 4278, 6532}, 30] (* Vincenzo Librandi, May 11 2015 *)
PROG
(PARI) Vec(-46*x*(x-1)*(x+2)*(2*x+1)/(x^4-48*x^2+1) + O(x^100))
(Magma) I:=[92, 138, 4278, 6532]; [n le 4 select I[n] else 48*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, May 11 2015
KEYWORD
nonn,easy
AUTHOR
Colin Barker, May 07 2015
STATUS
approved