login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A257565 Generalized Fubini numbers. Square array read by ascending antidiagonals, A(n,k) = 1 + k*(Sum_{j=1..n-1} C(n,j)*A(j,k)); n>=0 and k>=0. 6
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 13, 5, 1, 1, 1, 75, 37, 7, 1, 1, 1, 541, 365, 73, 9, 1, 1, 1, 4683, 4501, 1015, 121, 11, 1, 1, 1, 47293, 66605, 17641, 2169, 181, 13, 1, 1, 1, 545835, 1149877, 367927, 48601, 3971, 253, 15, 1, 1, 1, 7087261, 22687565, 8952553, 1306809, 108901, 6565, 337, 17, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

M. Mureşan defined the generalized Fubini numbers as the enumerators of the k-labelled ordered p partitions of an n-set.

REFERENCES

M. Mureşan, On the generalized Fubini numbers. (Romanian) Stud. Cercet. Mat. 37, 70-76 (1985).

LINKS

Table of n, a(n) for n=0..65.

Robert Gill, The number of elements in a generalized partition semilattice, Discrete mathematics 186.1-3 (1998): 125-134. See Example 1.

N. Kilar and Y. Simsek, A new family of Fubini type numbers and polynomials associated with Apostol-Bernoulli numbers and polynomials, J. Korean Math. Soc. 54 (5) (2017) 1605-1621.

FORMULA

E.g.f. of column k: 1+1/(1/(exp(z)-1)-k).

A(n,k) = Sum_{j=0..n-1} k^j*j!*{n,j+1} for n>0, else 1; {n,j} denotes the Stirling subset numbers.

A(n,k) = Sum_{j=0..n-1} k^(n-j-1)*(k+1)^j*<n,j> for n>0, else 1; <n,j> denotes the Eulerian numbers.

EXAMPLE

      1,       1,       1,       1,        1,         1, ...  A000012

      1,       1,       1,       1,        1,         1, ...  A000012

      1,       3,       5,       7,        9,        11, ...  A005408

      1,      13,      37,      73,      121,       181, ...  A003154

      1,      75,     365,    1015,     2169,      3971, ...  A193252

      1,     541,    4501,   17641,    48601,    108901, ...

      1,    4683,   66605,  367927,  1306809,   3583811, ...

      1,   47293, 1149877, 8952553, 40994521, 137595781, ...

A000012, A000670, A050351, A050352,  A050353,

MAPLE

F := proc(n, k) option remember; 1+k*add(binomial(n, j)*F(j, k), j=1..n-1) end:

seq(print(seq(F(n-k, k), k=0..n)), n=0..7); # triangular form

egf := k -> 1+1/(1/(exp(z)-1)-k): # egf of column k

for k from 0 to 4 do seq(j!*coeff(series(egf(k), z, 10), z, j), j=0..8) od;

A := (n, k) -> `if`(n=0, 1, add(k^(n-j-1)*(k+1)^j*combinat:-eulerian1(n, j), j=0..n-1)): seq(print(seq(A(n, k), k=0..5)), n=0..7);

MATHEMATICA

A[n_, k_] := A[n, k] = 1 + k Sum[Binomial[n, j] A[j, k], {j, 1, n - 1}]; Table[A[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 30 2016 *)

CROSSREFS

Rows: A005408, A003154, A193252.

Columns: A000670, A050351, A050352, A050353.

Sequence in context: A338817 A121585 A261959 * A276121 A262809 A331568

Adjacent sequences:  A257562 A257563 A257564 * A257566 A257567 A257568

KEYWORD

nonn,tabl

AUTHOR

Peter Luschny, May 08 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 25 01:31 EDT 2021. Contains 346273 sequences. (Running on oeis4.)