|
|
A257561
|
|
Number of permutations of length n that avoid the patterns 4231, 4312, and 4321.
|
|
5
|
|
|
1, 1, 2, 6, 21, 80, 322, 1346, 5783, 25372, 113174, 511649, 2338988, 10793251, 50205607, 235156609, 1108120540, 5249646137, 24987770893, 119443412277, 573125649031, 2759515312908, 13328311926552, 64559295743113, 313530998739472, 1526333617345412, 7447070497787110, 36409703715788374, 178353171835771153, 875224495042876048, 4302111437028045585
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) is the number of permutations of length n avoiding the partially ordered pattern (POP) {1>2, 1>3, 2>4} of length 4. That is, the number of length n permutations having no subsequences of length 4 in which the first element is the largest and the second element is larger than the fourth element. - Sergey Kitaev, Dec 09 2020
|
|
LINKS
|
|
|
FORMULA
|
G.f. satisfies (2*x^2+8*x-1)*F(x)^4 + (x^3+4*x^2-46*x+5)*F(x)^3 + (3*x^3-21*x^2+94*x-9)*F(x)^2 + (x^3+12*x^2-82*x+7)*F(x) + 3*x^2+26*x-2 = 0. - Jay Pantone, Oct 01 2015
a(n) ~ (2*sqrt(phi) + phi^2)^n / (2*sqrt(Pi*c)*n^(3/2)), where phi = A001622 is the golden ratio and c = 0.8259440839165470204581761605617676911185302765... is the smallest positive real root of the equation 62742241 + 678297200*c - 490473522*c^2 - 749210300*c^3 + 314712204*c^4 - 33996440*c^5 + 1143417*c^6 - 1180*c^7 + c^8 = 0. - Vaclav Kotesovec, Jul 05 2024
|
|
EXAMPLE
|
a(4) = 21 because there are 24 permutations of length 4, and 3 of them do not avoid 4231, 4312, and 4321.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|