login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257558
Triangle, read by rows, T(n,k) = k*Sum_{i=0..(n-k)/2} C(k,i)*C(2*n-k-4*i-1,n-2*i-k)/(n-2*i).
1
1, 1, 1, 3, 2, 1, 6, 7, 3, 1, 16, 18, 12, 4, 1, 47, 53, 37, 18, 5, 1, 146, 162, 120, 64, 25, 6, 1, 471, 518, 390, 227, 100, 33, 7, 1, 1562, 1708, 1299, 788, 385, 146, 42, 8, 1, 5291, 5762, 4410, 2750, 1426, 606, 203, 52, 9, 1, 18226, 19788, 15216, 9664, 5225, 2388, 903, 272, 63, 10, 1
OFFSET
1,4
LINKS
Indranil Ghosh, Rows 1..100, flattened
FORMULA
G.f.: 1/(1-C(x)*(x+x^3)*y)-1, where C(x) is g.f. of Catalan numbers (A000108).
EXAMPLE
1;
1, 1;
3, 2, 1;
6, 7, 3, 1;
16, 18, 12, 4, 1;
47, 53, 37, 18, 5, 1;
MATHEMATICA
Flatten[Table[k*Sum[Binomial[k, i] * Binomial[2n-k-4i-1, n-2i-k] / (n-2i), {i, 0, (n-k)/2}], {n, 1, 11}, {k, 1, n}]] (* Indranil Ghosh, Mar 04 2017 *)
PROG
(Maxima)
T(n, k):=(k*sum((binomial(k, i)*binomial(2*n-k-4*i-1, n-2*i-k))/(n-2*i), i, 0, (n-k)/2));
(PARI)
tabl(nn) = {for (n=1, nn, for(k=1, n, print1(k*sum(i=0, (n-k)/2, binomial(k, i) * binomial(2*n-k-4*i-1, n-2*i-k) / (n-2*i)), ", "); ); print(); ); };
tabl(11); \\ Indranil Ghosh, Mar 04 2017
CROSSREFS
Cf. A000108.
Sequence in context: A208518 A139624 A132276 * A370470 A202390 A210858
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Apr 30 2015
STATUS
approved