The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A257463 Number A(n,k) of factorizations of m^k into n factors, where m is a product of exactly n distinct primes and each factor is a product of k primes (counted with multiplicity); square array A(n,k), n>=0, k>=0, read by antidiagonals. 11
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 3, 10, 17, 1, 1, 1, 1, 3, 23, 93, 73, 1, 1, 1, 1, 4, 40, 465, 1417, 388, 1, 1, 1, 1, 4, 73, 1746, 19834, 32152, 2461, 1, 1, 1, 1, 5, 114, 5741, 190131, 1532489, 1016489, 18155, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 COMMENTS Also number of ways to partition the multiset consisting of k copies each of 1, 2, ..., n into n multisets of size k. LINKS Andrew Howroyd, Antidiagonals n = 0..27, flattened (antidiagonals 0..12 from Alois P. Heinz) P. A. MacMahon, Combinations derived from m identical sets of n different letters and their connexion with general magic squares, Proc. London Math. Soc., 17 (1917), 25-41. The array is on page 40. Math StackExchange, Number of ways to partition 40 balls with 4 colors into 4 baskets Marko Riedel, Maple program to compute array from cycle indices EXAMPLE A(4,2) = 17: (2*3*5*7)^2 = 44100 = 15*15*14*14 = 21*15*14*10 = 21*21*10*10 = 25*14*14*9 = 25*21*14*6 = 25*21*21*4 = 35*14*10*9 = 35*15*14*6 = 35*21*10*6 = 35*21*15*4 = 35*35*6*6 = 35*35*9*4 = 49*10*10*9 = 49*15*10*6 = 49*15*15*4 = 49*25*6*6 = 49*25*9*4. A(3,3) = 10: (2*3*5)^3 = 2700 = 30*30*30 = 45*30*20 = 50*27*20 = 50*30*18 = 50*45*12 = 75*20*18 = 75*30*12 = 75*45*8 = 125*18*12 = 125*27*8. A(2,4) = 3: (2*3)^4 = 1296 = 36*36 = 54*24 = 81*16. Square array A(n,k) begins:   1, 1,   1,     1,       1,        1,         1, ...   1, 1,   1,     1,       1,        1,         1, ...   1, 1,   2,     2,       3,        3,         4, ...   1, 1,   5,    10,      23,       40,        73, ...   1, 1,  17,    93,     465,     1746,      5741, ...   1, 1,  73,  1417,   19834,   190131,   1398547, ...   1, 1, 388, 32152, 1532489, 43816115, 848597563, ... MAPLE with(numtheory): b:= proc(n, i, k) option remember; `if`(n=1, 1,       add(`if`(d>i or bigomega(d)<>k, 0,       b(n/d, d, k)), d=divisors(n)))     end: A:= (n, k)-> b(mul(ithprime(i), i=1..n)^k\$2, k): seq(seq(A(n, d-n), n=0..d), d=0..8); MATHEMATICA b[n_, i_, k_] := b[n, i, k] = If[n==1, 1, DivisorSum[n, If[#>i || PrimeOmega[#] != k, 0, b[n/#, #, k]]&]]; A[n_, k_] := b[p = Product[Prime[i], {i, 1, n}]^k, p, k]; Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 20 2017, translated from Maple *) CROSSREFS Columns k=0+1, 2-4 give: A000012, A002135, A254243, A268668. Rows n=0+1, 2-5 give: A000012, A008619, A257464, A253259, A253263. Main diagonal gives A334286. Cf. A257462, A257493 (ordered factorizations). Sequence in context: A265313 A106498 A093466 * A293483 A125761 A154950 Adjacent sequences:  A257460 A257461 A257462 * A257464 A257465 A257466 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Apr 24 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 13:49 EDT 2020. Contains 336201 sequences. (Running on oeis4.)