Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Apr 21 2020 17:31:24
%S 1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,5,1,1,1,1,3,10,17,1,1,1,1,3,23,
%T 93,73,1,1,1,1,4,40,465,1417,388,1,1,1,1,4,73,1746,19834,32152,2461,1,
%U 1,1,1,5,114,5741,190131,1532489,1016489,18155,1,1
%N Number A(n,k) of factorizations of m^k into n factors, where m is a product of exactly n distinct primes and each factor is a product of k primes (counted with multiplicity); square array A(n,k), n>=0, k>=0, read by antidiagonals.
%C Also number of ways to partition the multiset consisting of k copies each of 1, 2, ..., n into n multisets of size k.
%H Andrew Howroyd, <a href="/A257463/b257463.txt">Antidiagonals n = 0..27, flattened</a> (antidiagonals 0..12 from Alois P. Heinz)
%H P. A. MacMahon, <a href="http://plms.oxfordjournals.org/content/s2-17/1/25.extract">Combinations derived from m identical sets of n different letters and their connexion with general magic squares</a>, Proc. London Math. Soc., 17 (1917), 25-41. The array is on page 40.
%H Math StackExchange, <a href="http://math.stackexchange.com/questions/1641433/">Number of ways to partition 40 balls with 4 colors into 4 baskets</a>
%H Marko Riedel, <a href="/A257463/a257463.txt">Maple program to compute array from cycle indices</a>
%e A(4,2) = 17: (2*3*5*7)^2 = 44100 = 15*15*14*14 = 21*15*14*10 = 21*21*10*10 = 25*14*14*9 = 25*21*14*6 = 25*21*21*4 = 35*14*10*9 = 35*15*14*6 = 35*21*10*6 = 35*21*15*4 = 35*35*6*6 = 35*35*9*4 = 49*10*10*9 = 49*15*10*6 = 49*15*15*4 = 49*25*6*6 = 49*25*9*4.
%e A(3,3) = 10: (2*3*5)^3 = 2700 = 30*30*30 = 45*30*20 = 50*27*20 = 50*30*18 = 50*45*12 = 75*20*18 = 75*30*12 = 75*45*8 = 125*18*12 = 125*27*8.
%e A(2,4) = 3: (2*3)^4 = 1296 = 36*36 = 54*24 = 81*16.
%e Square array A(n,k) begins:
%e 1, 1, 1, 1, 1, 1, 1, ...
%e 1, 1, 1, 1, 1, 1, 1, ...
%e 1, 1, 2, 2, 3, 3, 4, ...
%e 1, 1, 5, 10, 23, 40, 73, ...
%e 1, 1, 17, 93, 465, 1746, 5741, ...
%e 1, 1, 73, 1417, 19834, 190131, 1398547, ...
%e 1, 1, 388, 32152, 1532489, 43816115, 848597563, ...
%p with(numtheory):
%p b:= proc(n, i, k) option remember; `if`(n=1, 1,
%p add(`if`(d>i or bigomega(d)<>k, 0,
%p b(n/d, d, k)), d=divisors(n)))
%p end:
%p A:= (n, k)-> b(mul(ithprime(i), i=1..n)^k$2, k):
%p seq(seq(A(n, d-n), n=0..d), d=0..8);
%t b[n_, i_, k_] := b[n, i, k] = If[n==1, 1, DivisorSum[n, If[#>i || PrimeOmega[#] != k, 0, b[n/#, #, k]]&]];
%t A[n_, k_] := b[p = Product[Prime[i], {i, 1, n}]^k, p, k];
%t Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Mar 20 2017, translated from Maple *)
%Y Columns k=0+1, 2-4 give: A000012, A002135, A254243, A268668.
%Y Rows n=0+1, 2-5 give: A000012, A008619, A257464, A253259, A253263.
%Y Main diagonal gives A334286.
%Y Cf. A257462, A257493 (ordered factorizations).
%K nonn,tabl
%O 0,13
%A _Alois P. Heinz_, Apr 24 2015