login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257142
Triangle read by rows: T(n,m) = Sum_{k=0..n} C(k-1,m-1)*C(k,m-1)*C(n+k-1,n-k)/m.
0
1, 3, 1, 8, 7, 1, 21, 34, 12, 1, 55, 141, 89, 18, 1, 144, 534, 522, 186, 25, 1, 377, 1905, 2651, 1445, 340, 33, 1, 987, 6512, 12198, 9370, 3350, 568, 42, 1, 2584, 21557, 52211, 53533, 26804, 6881, 889, 52, 1
OFFSET
1,2
COMMENTS
First column is A001906.
FORMULA
G.f.: N(x/(1-x)^2,y), where N(x,y) is the g.f. of Narayana's triangle A001263.
EXAMPLE
1;
3,1;
8,7,1;
21,34,12,1;
55,141,89,18,1;
144,534,522,186,25,1;
MATHEMATICA
Table[Sum[Binomial[k - 1, m - 1] * Binomial[k, m - 1] * Binomial[n + k - 1, n - k]/m, {k, 0, n}], {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Apr 17 2015 *)
PROG
(Maxima) T(n, m):=sum(binomial(k-1, m-1)*binomial(k, m-1)*binomial(n+k-1, n-k)/m, k, 0, n);
(PARI) tabl(nn) = {default(seriesprecision, nn+1); pol = subst((1-xx*(1+y)-sqrt((1-xx*(1+y))^2-4*y*xx^2))/(2*xx), xx, x/(1-x)^2) + O(x^nn); for (n=1, nn-1, poly = polcoeff(pol, n, x); for (k=1, n, print1(polcoeff(poly, k, y), ", "); ); print(); ); } \\ Michel Marcus, Apr 17 2015
CROSSREFS
Sequence in context: A005295 A077897 A308737 * A270861 A208656 A242440
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Apr 16 2015
STATUS
approved