OFFSET
1,2
COMMENTS
First column is A001906.
FORMULA
G.f.: N(x/(1-x)^2,y), where N(x,y) is the g.f. of Narayana's triangle A001263.
EXAMPLE
1;
3,1;
8,7,1;
21,34,12,1;
55,141,89,18,1;
144,534,522,186,25,1;
MATHEMATICA
Table[Sum[Binomial[k - 1, m - 1] * Binomial[k, m - 1] * Binomial[n + k - 1, n - k]/m, {k, 0, n}], {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Apr 17 2015 *)
PROG
(Maxima) T(n, m):=sum(binomial(k-1, m-1)*binomial(k, m-1)*binomial(n+k-1, n-k)/m, k, 0, n);
(PARI) tabl(nn) = {default(seriesprecision, nn+1); pol = subst((1-xx*(1+y)-sqrt((1-xx*(1+y))^2-4*y*xx^2))/(2*xx), xx, x/(1-x)^2) + O(x^nn); for (n=1, nn-1, poly = polcoeff(pol, n, x); for (k=1, n, print1(polcoeff(poly, k, y), ", "); ); print(); ); } \\ Michel Marcus, Apr 17 2015
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Apr 16 2015
STATUS
approved