login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242440
Decimal expansion of a constant related to a certain Sobolev isoperimetric inequality.
2
3, 1, 8, 7, 5, 9, 0, 6, 0, 9, 8, 0, 3, 8, 6, 6, 2, 4, 8, 1, 1, 9, 7, 2, 1, 7, 2, 4, 7, 6, 2, 1, 2, 5, 4, 3, 2, 2, 5, 3, 5, 0, 7, 7, 4, 6, 9, 9, 6, 8, 2, 2, 8, 2, 9, 0, 2, 1, 4, 1, 8, 1, 5, 8, 1, 8, 8, 7, 8, 8, 4, 7, 0, 3, 8, 3, 9, 9, 7, 6, 8, 0, 8, 1, 6, 0, 2, 0, 4, 6, 3, 9, 3, 3, 8, 8, 2, 9, 1, 3
OFFSET
0,1
COMMENTS
Summarizing the definition: the supremum of the absolute value of a differentiable function f(x,y) is less than or equal to 0.318759... times the square root of the integral of the sum of squares of all partial derivatives of f.
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 222.
FORMULA
Equals sqrt( 1/(2*Pi) * Integral_{t >= 1} 1/(sqrt(t^2 + 2)*sqrt(t^2 + 3)) dt ).
sqrt((F(log(3)/2*i, 3/2)*i + K(-1/2))/(2*Pi*sqrt(2))), with i = sqrt(-1), F and K being the elliptic integrals.
EXAMPLE
0.31875906098038662481197217247621254322535...
MAPLE
Re(evalf(sqrt((EllipticF(I/sqrt(3), sqrt(3/2))*I + EllipticK(I/sqrt(2))) / (2*Pi*sqrt(2))), 120)); # Vaclav Kotesovec, Apr 22 2015
MATHEMATICA
Sqrt[(EllipticF[Log[3]/2*I, 3/2]*I + EllipticK[-1/2])/(2*Pi*Sqrt[2])] // Re // RealDigits[#, 10, 100]& // First
RealDigits[Sqrt[(EllipticK[1/3] - EllipticF[ArcCot[Sqrt[2]], 1/3])/(2 Sqrt[3] Pi)], 10, 100][[1]] (* Jan Mangaldan, Jan 04 2017 *)
CROSSREFS
Sequence in context: A257142 A270861 A208656 * A245651 A007023 A176103
KEYWORD
nonn,cons
AUTHOR
STATUS
approved