login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,m) = Sum_{k=0..n} C(k-1,m-1)*C(k,m-1)*C(n+k-1,n-k)/m.
0

%I #21 Apr 18 2015 01:07:36

%S 1,3,1,8,7,1,21,34,12,1,55,141,89,18,1,144,534,522,186,25,1,377,1905,

%T 2651,1445,340,33,1,987,6512,12198,9370,3350,568,42,1,2584,21557,

%U 52211,53533,26804,6881,889,52,1

%N Triangle read by rows: T(n,m) = Sum_{k=0..n} C(k-1,m-1)*C(k,m-1)*C(n+k-1,n-k)/m.

%C First column is A001906.

%F G.f.: N(x/(1-x)^2,y), where N(x,y) is the g.f. of Narayana's triangle A001263.

%e 1;

%e 3,1;

%e 8,7,1;

%e 21,34,12,1;

%e 55,141,89,18,1;

%e 144,534,522,186,25,1;

%t Table[Sum[Binomial[k - 1, m - 1] * Binomial[k, m - 1] * Binomial[n + k - 1, n - k]/m, {k, 0, n}], {n, 9}, {m, n}] // Flatten (* _Michael De Vlieger_, Apr 17 2015 *)

%o (Maxima) T(n,m):=sum(binomial(k-1,m-1)*binomial(k,m-1)*binomial(n+k-1,n-k)/m,k,0,n);

%o (PARI) tabl(nn) = {default(seriesprecision, nn+1); pol = subst((1-xx*(1+y)-sqrt((1-xx*(1+y))^2-4*y*xx^2))/(2*xx), xx, x/(1-x)^2) + O(x^nn); for (n=1, nn-1, poly = polcoeff(pol, n, x); for (k=1, n, print1(polcoeff(poly, k, y), ", ");); print(););} \\ _Michel Marcus_, Apr 17 2015

%Y Cf. A001263, A001906.

%K nonn,tabl

%O 1,2

%A _Vladimir Kruchinin_, Apr 16 2015