The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256993 a(1) = 0; for n > 1, a(n) = 1 + a(A256992(n)). 9
 0, 1, 2, 3, 2, 3, 4, 3, 4, 4, 5, 3, 4, 5, 4, 5, 4, 5, 6, 5, 5, 4, 5, 6, 6, 5, 4, 5, 6, 5, 6, 5, 6, 6, 7, 5, 6, 6, 6, 7, 5, 6, 6, 6, 5, 7, 7, 6, 6, 5, 7, 7, 6, 7, 6, 6, 7, 5, 6, 7, 6, 7, 6, 7, 6, 7, 8, 7, 7, 6, 7, 8, 7, 7, 6, 7, 7, 8, 6, 7, 7, 7, 8, 6, 7, 6, 7, 8, 8, 7, 7, 6, 8, 7, 7, 8, 6, 8, 7, 7, 8, 7, 6, 8, 7, 8, 8, 7, 7, 8, 8, 6, 7, 7, 7, 8, 7, 8, 8, 7, 6, 7, 8, 7, 8, 7, 8, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Number of iterations of A256992 needed to reach one when starting from n. LINKS Antti Karttunen, Table of n, a(n) for n = 1..8192 FORMULA a(1) = 0; for n > 1, a(n) = 1 + a(A256992(n)). Other observations. For all n >= 1 it holds that: a(n) >= A254110(n). a(n) >= A256989(n). a(n) >= A255559(n)-1. Also it seems that a(n) - A070939(n) = -1, 0 or +1 for all n >= 1. [Compare A256991 and A256992 to see the connection.] It is also very likely that a(n) <= A071542(n) for all n. From Antti Karttunen, Dec 10 2016: (Start) For all n >= 2, a(n) = A070939(A279341(n)) = A070939(A279343(n)). For all n >= 2, a(n) = A279345(n) + A279346(n) - 1. (End) PROG (Scheme, with memoization macro definec) (definec (A256993 n) (if (= 1 n) 0 (+ 1 (A256993 (A256992 n))))) CROSSREFS Cf. A070939, A071542, A254110, A255559, A256991, A256992, A257264, A257265, A279341, A279343, A279345, A279346. Sequence in context: A069464 A156723 A240834 * A348192 A173523 A199323 Adjacent sequences: A256990 A256991 A256992 * A256994 A256995 A256996 KEYWORD nonn AUTHOR Antti Karttunen, Apr 15 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 06:04 EDT 2024. Contains 371906 sequences. (Running on oeis4.)