login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256811
Primes p such that (p^2+2)/3 and (p^4+2)/3 are prime.
1
37, 521, 881, 1619, 2053, 2213, 2341, 3527, 3637, 3727, 4157, 5147, 7019, 10009, 10891, 12277, 14741, 15913, 16273, 17747, 18757, 24499, 25307, 25577, 26209, 27073, 31481, 31517, 32833, 35083, 36739, 36791, 39079, 40231, 40949, 41039, 42013, 42461, 42767, 47917
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 37; (37^2 + 2)/3 = 457; (37^4 + 2)/3 = 624721; all three are prime.
MATHEMATICA
Select[Prime[Range[10^4]], PrimeQ[(#^2 + 2)/3] && PrimeQ[(#^4 + 2)/3] &]
PROG
(PARI) forprime(p=1, 10^5, if(!((p^2+2)%3)&&!((p^4+2)%3)&&isprime((p^2+2)/3)&&isprime((p^4+2)/3), print1(p, ", "))) \\ Derek Orr, Apr 16 2015
(Magma) [p: p in PrimesUpTo(5*10^4) | IsPrime((p^2+2) div 3) and IsPrime((p^4+2) div 3 )]; // Vincenzo Librandi, Apr 20 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
K. D. Bajpai, Apr 15 2015
STATUS
approved