login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A256810
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with no 3x3 subblock diagonal sum 0 and no antidiagonal sum 0 and no row sum 0 or 1 and no column sum 0 or 1
9
32, 86, 86, 237, 312, 237, 641, 1167, 1167, 641, 1731, 4219, 5891, 4219, 1731, 4690, 15291, 28655, 28655, 15291, 4690, 12707, 55798, 140031, 187203, 140031, 55798, 12707, 34408, 203129, 688353, 1226781, 1226781, 688353, 203129, 34408, 93168
OFFSET
1,1
COMMENTS
Table starts
.....32......86.......237.........641.........1731...........4690
.....86.....312......1167........4219........15291..........55798
....237....1167......5891.......28655.......140031.........688353
....641....4219.....28655......187203......1226781........8090191
...1731...15291....140031.....1226781.....10791281.......95609517
...4690...55798....688353.....8090191.....95609517.....1138136868
..12707..203129...3375943....53254665....845074953....13512239171
..34408..738760..16546465...350253925...7462718887...160298389688
..93168.2689072..81148017..2304752967..65946786795..1902928304204
.252313.9788263.397969727.15167443677.582793811989.22590412601705
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +7*a(n-3) +7*a(n-4) +3*a(n-5) -a(n-6) -6*a(n-7) -2*a(n-8)
k=2: [order 14]
k=3: [order 28]
k=4: [order 52]
EXAMPLE
Some solutions for n=4 k=4
..0..1..1..0..1..1....1..1..0..1..1..0....0..1..1..1..0..1....1..1..1..0..1..1
..1..1..0..1..1..1....0..1..1..1..0..1....1..0..1..1..1..0....1..0..1..1..1..1
..1..1..1..1..1..1....1..1..1..1..1..1....1..1..1..1..1..1....0..1..1..1..1..1
..1..1..1..1..1..1....1..1..1..1..1..1....0..1..1..0..1..1....1..1..1..0..1..1
..0..1..1..0..1..1....1..1..1..0..1..1....1..1..0..1..1..1....1..0..1..1..1..1
..1..0..1..1..1..0....0..1..1..1..0..1....1..1..1..1..1..1....1..1..1..1..1..1
CROSSREFS
Sequence in context: A043410 A044170 A044551 * A256803 A229721 A184029
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 10 2015
STATUS
approved