login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that (p^2+2)/3 and (p^4+2)/3 are prime.
1

%I #24 Sep 08 2022 08:46:12

%S 37,521,881,1619,2053,2213,2341,3527,3637,3727,4157,5147,7019,10009,

%T 10891,12277,14741,15913,16273,17747,18757,24499,25307,25577,26209,

%U 27073,31481,31517,32833,35083,36739,36791,39079,40231,40949,41039,42013,42461,42767,47917

%N Primes p such that (p^2+2)/3 and (p^4+2)/3 are prime.

%H K. D. Bajpai, <a href="/A256811/b256811.txt">Table of n, a(n) for n = 1..10000</a>

%e a(1) = 37; (37^2 + 2)/3 = 457; (37^4 + 2)/3 = 624721; all three are prime.

%t Select[Prime[Range[10^4]], PrimeQ[(#^2 + 2)/3] && PrimeQ[(#^4 + 2)/3] &]

%o (PARI) forprime(p=1,10^5,if(!((p^2+2)%3)&&!((p^4+2)%3)&&isprime((p^2+2)/3)&&isprime((p^4+2)/3),print1(p,", "))) \\ _Derek Orr_, Apr 16 2015

%o (Magma) [p: p in PrimesUpTo(5*10^4) | IsPrime((p^2+2) div 3) and IsPrime((p^4+2) div 3 )]; // _Vincenzo Librandi_, Apr 20 2015

%Y Cf. A241120, A253941, A253976, A253940.

%K nonn,easy

%O 1,1

%A _K. D. Bajpai_, Apr 15 2015