login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256658
Rectangular array by antidiagonals: row n consists of numbers k such that F(n+1) is the trace of the minimal alternating Fibonacci representation of k, where F = A000045 (Fibonacci numbers).
2
1, 9, 2, 14, 15, 3, 17, 23, 24, 5, 22, 28, 37, 39, 8, 27, 36, 45, 60, 63, 13, 30, 44, 58, 73, 97, 102, 21, 35, 49, 71, 94, 118, 157, 165, 34, 43, 57, 79, 115, 152, 191, 254, 267, 55, 48, 70, 92, 128, 186, 246, 309, 411, 432, 89, 51, 78, 113, 149, 207, 301
OFFSET
1,2
COMMENTS
See A256655 for definitions. This array and the array at A256659 partition the positive integers. The row differences are Fibonacci numbers. The columns satisfy the Fibonacci recurrence x(n) = x(n-1) + x(n-2).
EXAMPLE
Northwest corner:
1 9 14 17 22 27 30 35 43
2 15 23 28 36 44 49 57 70
3 24 37 45 58 71 79 92 113
5 39 69 73 94 115 128 149 183
8 63 97 118 152 186 207 241 296
13 102 157 191 246 301 335 390 479
MATHEMATICA
b[n_] = Fibonacci[n]; bb = Table[b[n], {n, 1, 70}];
h[0] = {1}; h[n_] := Join[h[n - 1], Table[b[n + 2], {k, 1, b[n]}]];
g = h[18]; r[0] = {0};
r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]];
t = Table[Last[r[n]], {n, 0, 1000}]; (* A256656 *)
TableForm[Table[Flatten[-1 + Position[t, b[n]]], {n, 2, 8}]] (* A256658 *)
TableForm[Table[Flatten[-1 + Position[t, -b[n]]], {n, 2, 8}]] (* A256659 *)
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Apr 08 2015
STATUS
approved