login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Rectangular array by antidiagonals: row n consists of numbers k such that F(n+1) is the trace of the minimal alternating Fibonacci representation of k, where F = A000045 (Fibonacci numbers).
2

%I #4 Apr 09 2015 07:59:06

%S 1,9,2,14,15,3,17,23,24,5,22,28,37,39,8,27,36,45,60,63,13,30,44,58,73,

%T 97,102,21,35,49,71,94,118,157,165,34,43,57,79,115,152,191,254,267,55,

%U 48,70,92,128,186,246,309,411,432,89,51,78,113,149,207,301

%N Rectangular array by antidiagonals: row n consists of numbers k such that F(n+1) is the trace of the minimal alternating Fibonacci representation of k, where F = A000045 (Fibonacci numbers).

%C See A256655 for definitions. This array and the array at A256659 partition the positive integers. The row differences are Fibonacci numbers. The columns satisfy the Fibonacci recurrence x(n) = x(n-1) + x(n-2).

%e Northwest corner:

%e 1 9 14 17 22 27 30 35 43

%e 2 15 23 28 36 44 49 57 70

%e 3 24 37 45 58 71 79 92 113

%e 5 39 69 73 94 115 128 149 183

%e 8 63 97 118 152 186 207 241 296

%e 13 102 157 191 246 301 335 390 479

%t b[n_] = Fibonacci[n]; bb = Table[b[n], {n, 1, 70}];

%t h[0] = {1}; h[n_] := Join[h[n - 1], Table[b[n + 2], {k, 1, b[n]}]];

%t g = h[18]; r[0] = {0};

%t r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]];

%t t = Table[Last[r[n]], {n, 0, 1000}]; (* A256656 *)

%t TableForm[Table[Flatten[-1 + Position[t, b[n]]], {n, 2, 8}]] (* A256658 *)

%t TableForm[Table[Flatten[-1 + Position[t, -b[n]]], {n, 2, 8}]] (* A256659 *)

%Y Cf. A000045, A256655, A256659.

%K nonn,tabl,easy

%O 1,2

%A _Clark Kimberling_, Apr 08 2015