login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256652
Numbers D such that D^2 = A^4 + B^5 + C^6 has more than one solution in positive integers (A, B, C).
3
1257, 32769, 262176, 262208, 1081344, 4198400, 16777217, 16809984
OFFSET
1,1
COMMENTS
A subsequence of A255830. Sequences A256604 and A256603 are the analog for A180241 and A256091.
Terms a(2) - a(8) have Hamming weight 2: 32769 = 2^15 + 1, 262176 = 2^18 + 2^5, 262208 = 2^18 + 2^6, 1081344 = 2^20 + 2^15, 4198400 = 2^22 + 2^12, 16777217 = 2^24 + 1, 16809984 = 2^24 + 2^15.
Given D^2 = A^4+B^5+C^6, multiply by u^60, u>1, to get (u^30*D)^2 = (u^15*A)^4 + (u^12*B)^5 + (u^10*C)^6. If D is a solution then so is u^30*D. - Lars Blomberg, Apr 26 2015
Solutions for a(1)-a(8) as well as some larger terms:
..A1.....B1....C1......A2.....B2....C2..............D
..35......8.....6......32......2.....9...........1257
..16......1....32......16.....64.....1..........32769
..64......4....64.....512......4....16.........262176
...8.....32....64.....512.....32.....4.........262208
1024.....64....64.....512....256....32........1081344
.480....240...160....2048....128....16........4198400
...1.....32...256....4096.....32.....1.......16777217
1024.....64...256....4096....256....32.......16809984
.512......4..1024...32768......4....64.....1073741856
1024...4096.....8...32768....256.....8.....1073742336
4096...2048..1024...32768...2048...256.....1090519040
...1..16384....64.....512..16384.....1....34359738369
4096..16384....16......64..16384...256....34359742464
4096..16384..1024...32768..16384...256....34376515584
.512...2048..4096..262144...2048....64....68719738880
...1....256..8192....1024......1..8192...549755813889
1024...4096..8192...32768....256..8192...549756862464
- Lars Blomberg, Apr 26 2015
EXAMPLE
(A, B, C) = (32, 2, 9): 32^4 + 2^5 + 9^6 = 1048576 + 32 + 531441 = 1580049 = 1257^2, and
(A, B, C) = (35, 8, 6): 35^4 + 8^5 + 6^6 = 1500625 + 32768 + 46656 = 1580049 = 1257^2,
so 1257 is a term.
PROG
(PARI) is_A256652(D, f=-1)={my(C=0, B, D2C6); while(1<D2C6=D^2-C++^6, B=0; while(0<D2C6-B++^5, ispower(D2C6-B^5, 4)&&f++&&return(1)))}
for(D=2, 10^5, is_A256652(D)&&print1(D", ")) \\ Converted to integer arithmetic by M. F. Hasler, May 01 2015
KEYWORD
nonn,bref,more
AUTHOR
M. F. Hasler, Apr 06 2015
EXTENSIONS
a(5)-a(8) from Lars Blomberg, Apr 26 2015
STATUS
approved