login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256635
a(n) = the smallest number k such that the base-10 digital sum of sigma(k) is n.
2
1, 19, 2, 3, 13, 5, 4, 7, 10, 12, 28, 18, 192, 67, 42, 273, 52, 138, 324, 336, 196, 300, 372, 438, 2716, 997, 1590, 3468, 2512, 3260, 5817, 5692, 4112, 17472, 10852, 15840, 18496, 27252, 22860, 24300, 31572, 35172, 61488, 165652, 138438, 265252, 285652, 292860
OFFSET
1,2
COMMENTS
a(n) = the smallest number k such that A007953(A000203(k)) = n.
Note that A007953(A000203(k)) is also A067342(k).
LINKS
Max Alekseyev, Table of n, a(n) for n = 1..100 (terms for n = 1..66 from Chai Wah Wu)
EXAMPLE
For n = 5; digital sum of sigma(13) = digital sum of 14 = 5. The number 13 is the smallest number with this property so a(5) = 13.
MAPLE
N := 10^6: # return all values before the first > N
for n from 1 to N do
v:= convert(convert(numtheory:-sigma(n), base, 10), `+`);
if not assigned(A[v]) then A[v]:= n fi;
od:
for count from 1 while assigned(A[count]) do od:
seq(A[i], i=1..count-1); # Robert Israel, Apr 09 2015
MATHEMATICA
f[n_] := Block[{k = 1}, While[Plus @@ IntegerDigits[DivisorSigma[1, k]] != n, k++]; k]; Array[f, 48] (* Michael De Vlieger, Apr 07 2015 *)
PROG
(Magma) A256635:=func<n|exists(r){k:k in[1..10000000] | &+Intseq(SumOfDivisors(k)) eq n }select r else 0>; [A256635(n):n in[1..50]]
(PARI) a(n) = {my(k = 1); while(sumdigits(sigma(k)) != n, k++); k; } \\ Michel Marcus, Apr 09 2015
(Python)
from sympy.ntheory.factor_ import divisor_sigma
def A256635(n):
....k = 1
....while sum(int(d) for d in str(divisor_sigma(k))) != n:
........k += 1
....return k # Chai Wah Wu, Apr 18 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jaroslav Krizek, Apr 06 2015
STATUS
approved