login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256524
Number of partitions of 3n into at most 4 parts.
2
1, 3, 9, 18, 34, 54, 84, 120, 169, 225, 297, 378, 478, 588, 720, 864, 1033, 1215, 1425, 1650, 1906, 2178, 2484, 2808, 3169, 3549, 3969, 4410, 4894, 5400, 5952, 6528, 7153, 7803, 8505, 9234, 10018, 10830, 11700, 12600, 13561, 14553, 15609, 16698, 17854, 19044
OFFSET
0,2
FORMULA
G.f.: (x^2+x+1)*(2*x^2+1) / ((x-1)^4*(x+1)^2*(x^2+1)).
a(n) = A001400(3n). - Alois P. Heinz, Apr 01 2015
EXAMPLE
For n=1 the 3 partitions of 1*3 = 3 are [3], [1,2] and [1,1,1].
MATHEMATICA
LinearRecurrence[{2, 0, -2, 2, -2, 0, 2, -1}, {1, 3, 9, 18, 34, 54, 84, 120}, 50] (* Jean-François Alcover, Apr 26 2017 *)
PROG
(PARI) concat(1, vector(40, n, k=0; forpart(p=3*n, k++, , [1, 4]); k))
(PARI) Vec((x^2+x+1)*(2*x^2+1)/((x-1)^4*(x+1)^2*(x^2+1)) + O(x^100))
CROSSREFS
Cf. A001400, A077043 (3 parts), A256525 (5 parts), A256315 (6 parts).
Sequence in context: A127759 A064843 A093446 * A210970 A293406 A295862
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Apr 01 2015
STATUS
approved