OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,0,-2,2,-2,0,2,-1).
FORMULA
G.f.: (x^2+x+1)*(2*x^2+1) / ((x-1)^4*(x+1)^2*(x^2+1)).
a(n) = A001400(3n). - Alois P. Heinz, Apr 01 2015
EXAMPLE
For n=1 the 3 partitions of 1*3 = 3 are [3], [1,2] and [1,1,1].
MATHEMATICA
LinearRecurrence[{2, 0, -2, 2, -2, 0, 2, -1}, {1, 3, 9, 18, 34, 54, 84, 120}, 50] (* Jean-François Alcover, Apr 26 2017 *)
PROG
(PARI) concat(1, vector(40, n, k=0; forpart(p=3*n, k++, , [1, 4]); k))
(PARI) Vec((x^2+x+1)*(2*x^2+1)/((x-1)^4*(x+1)^2*(x^2+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Apr 01 2015
STATUS
approved