login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256394
Prime values of pi(n) that divide n.
4
2, 3, 11, 67, 71, 439, 1051, 6469, 40087, 100361, 100363, 251737, 251761, 637319, 637327, 4124459, 10553513, 10553551, 27067277, 69709733, 179993171, 465769817, 3140421769, 8179002109, 8179002133, 55762149029, 55762149071, 382465573489, 1003652347081
OFFSET
1,1
COMMENTS
a(n) is the largest prime factor of n, since pi(n) ~ n / log n.
LINKS
K. Gaitanas, An explicit formula for the prime counting function, arXiv:1311.1398 [math.NT], 2013.
S. W. Golomb, On the Ratio of N to pi(N), American Mathematical Monthly, 69 (1962), 36-37.
R. T. Harger and W. L. Hightower, An Interesting Property of x/pi(x), College Math. J., 40 (2009), 213-214.
Eric Weisstein's World of Mathematics, Prime Counting Function
FORMULA
a(n) = A000720(A071394(n)) = A006530(A071394(n)).
EXAMPLE
pi(6) = 3 is prime, and 3 divides 6, so 3 is a member.
MATHEMATICA
c = 0; lpf[n_] := If[ PrimeQ[n], c++; n, Transpose[ FactorInteger[n]][[1, -1]]]; Do[ If[lpf[n] == c, Print[ PrimePi[n]]], {n, 2, 10^7}]
PrimePi[Select[Select[Range[2, 10^6], IntegerQ[#/PrimePi[#]]&], PrimeQ[PrimePi[#]]&]] (* Ivan N. Ianakiev, Apr 15 2015 *)
Select[Table[{PrimePi[n], n}, {n, 10^6}], PrimeQ[#[[1]]]&&Divisible[#[[2]], #[[1]]]&][[All, 1]] (* The program generates the first 9 terms of the sequence. To generate more, increase the constant for n. *) (* Harvey P. Dale, Feb 08 2022 *)
PROG
(PARI) for(n=1, 10^6, if(isprime(p=primepi(n))&&!(n%primepi(n)), print1(p, ", "))) \\ Derek Orr, Apr 14 2015
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Apr 13 2015
EXTENSIONS
More terms from Giovanni Resta, Sep 01 2018
STATUS
approved