login
A256395
Composite Markoff numbers.
3
34, 169, 194, 610, 985, 1325, 4181, 6466, 9077, 10946, 14701, 37666, 51641, 62210, 75025, 135137, 195025, 196418, 294685, 499393, 646018, 925765, 1136689, 1278818, 1346269, 1441889, 2012674, 2423525, 3524578
OFFSET
1,1
COMMENTS
Bourgain, Gamburd, and Sarnak have announced a proof that almost all Markoff numbers A002559 are composite. Equivalently, the prime Markoff numbers A178444 have density zero among all Markoff numbers. (It is conjectured that infinitely many Markoff numbers are prime.)
See A002559 for references, links, and additional comments.
LINKS
J. Bourgain, A. Gamburd, and P. Sarnak, Markoff triples and strong approximation, arXiv:1505.06411 [math.NT], 2015.
MATHEMATICA
Rest[Select[m = {1};
Do[x = m[[i]]; y = m[[j]]; a = (3*x*y + Sqrt[-4*x^2 - 4*y^2 + 9*x^2*y^2])/2;
b = (3*x*y + Sqrt[-4*x^2 - 4*y^2 + 9*x^2*y^2])/2;
If[IntegerQ[a], m = Union[Join[m, {a}]]];
If[IntegerQ[b], m = Union[Join[m, {b}]]], {n, 8}, {i, Length[m]}, {j, i}];
Take[m, 50], ! PrimeQ[#] &]]
CROSSREFS
Intersection of A002808 and A002559.
Complement of (A178444 union {1}) in A002559.
Sequence in context: A345126 A212407 A190607 * A182585 A191593 A259944
KEYWORD
nonn,more
AUTHOR
Jonathan Sondow, Apr 30 2015
STATUS
approved