login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256309
Number of partitions of 2n into exactly 5 parts.
2
0, 0, 0, 1, 3, 7, 13, 23, 37, 57, 84, 119, 164, 221, 291, 377, 480, 603, 748, 918, 1115, 1342, 1602, 1898, 2233, 2611, 3034, 3507, 4033, 4616, 5260, 5969, 6747, 7599, 8529, 9542, 10642, 11835, 13125, 14518, 16019, 17633, 19366, 21224, 23212, 25337, 27604
OFFSET
0,5
LINKS
FORMULA
G.f.: -x^3*(x^4+x^2+x+1) / ((x-1)^5*(x+1)*(x^2+x+1)*(x^4+x^3+x^2+x+1)).
EXAMPLE
For n=4 the 3 partitions of 2*4 = 8 are [1,1,1,1,4], [1,1,1,2,3] and [1,1,2,2,2].
MATHEMATICA
CoefficientList[Series[- x^3 (x^4 + x^2 + x + 1) / ((x - 1)^5 (x + 1) (x^2 + x + 1) (x^4 + x^3 + x^2 + x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 22 2015 *)
LinearRecurrence[{2, 0, -1, -1, 1, 0, -1, 1, 1, 0, -2, 1}, {0, 0, 0, 1, 3, 7, 13, 23, 37, 57, 84, 119}, 50] (* Harvey P. Dale, Mar 06 2023 *)
PROG
(PARI) concat(0, vector(40, n, k=0; forpart(p=2*n, k++, , [5, 5]); k))
(PARI) concat([0, 0, 0], Vec(-x^3*(x^4+x^2+x+1)/((x-1)^5*(x+1)*(x^2+x+1)*(x^4+x^3+x^2+x+1)) + O(x^100)))
CROSSREFS
Cf. Similar sequences: A000212 (3 parts), A001477 (2 parts), A014126 (4 parts), A256310 (6 parts).
Sequence in context: A258030 A164787 A131205 * A058682 A081995 A291141
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Mar 22 2015
STATUS
approved