Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Mar 06 2023 08:24:54
%S 0,0,0,1,3,7,13,23,37,57,84,119,164,221,291,377,480,603,748,918,1115,
%T 1342,1602,1898,2233,2611,3034,3507,4033,4616,5260,5969,6747,7599,
%U 8529,9542,10642,11835,13125,14518,16019,17633,19366,21224,23212,25337,27604
%N Number of partitions of 2n into exactly 5 parts.
%H Colin Barker, <a href="/A256309/b256309.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-1,-1,1,0,-1,1,1,0,-2,1).
%F G.f.: -x^3*(x^4+x^2+x+1) / ((x-1)^5*(x+1)*(x^2+x+1)*(x^4+x^3+x^2+x+1)).
%e For n=4 the 3 partitions of 2*4 = 8 are [1,1,1,1,4], [1,1,1,2,3] and [1,1,2,2,2].
%t CoefficientList[Series[- x^3 (x^4 + x^2 + x + 1) / ((x - 1)^5 (x + 1) (x^2 + x + 1) (x^4 + x^3 + x^2 + x + 1)), {x, 0, 50}], x] (* _Vincenzo Librandi_, Mar 22 2015 *)
%t LinearRecurrence[{2,0,-1,-1,1,0,-1,1,1,0,-2,1},{0,0,0,1,3,7,13,23,37,57,84,119},50] (* _Harvey P. Dale_, Mar 06 2023 *)
%o (PARI) concat(0, vector(40, n, k=0; forpart(p=2*n, k++, , [5,5]); k))
%o (PARI) concat([0,0,0], Vec(-x^3*(x^4+x^2+x+1)/((x-1)^5*(x+1)*(x^2+x+1)*(x^4+x^3+x^2+x+1)) + O(x^100)))
%Y Cf. Similar sequences: A000212 (3 parts), A001477 (2 parts), A014126 (4 parts), A256310 (6 parts).
%K nonn,easy
%O 0,5
%A _Colin Barker_, Mar 22 2015