login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256169
Expansion of (1-sqrt(1-4*(x+x^2)^2))/(2*(x+x^2)^2).
4
1, 0, 1, 2, 3, 8, 17, 38, 91, 212, 509, 1234, 3007, 7408, 18353, 45742, 114643, 288620, 729749, 1852138, 4716951, 12050920, 30876185, 79317990, 204256027, 527171556, 1363428637, 3533070818, 9171798815, 23849951200, 62116162081
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k=floor((n-1)/4)..(n-1)} binomial(2*k,n-2*k-1)*C(k), where C(k) are the Catalan numbers (A000108).
G.f. g(x) satisfies 1 - g(x) + x^2 (1+x)^2 g(x)^2 = 0. Recurrence: a(n) = sum(j>=0, a(j)*(a(n-j-2)+2*a(n-j-3)+a(n-j-4))) for n >= 1, where a(j) = 0 for j < 0. - Robert Israel, Mar 17 2015
D-finite with recurrence: (n+2)*a(n) = -(n+3)*a(n-1) + 4*(n-1)*a(n-2) + 4*(3*n - 5)*a(n-3) + 4*(3*n - 7)*a(n-4) + 4*(n-3)*a(n-5). - Vaclav Kotesovec, Mar 17 2015
a(n) ~ sqrt(6-2*sqrt(3)) * (1+sqrt(3))^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 17 2015
MAPLE
f:= proc(n) option remember;
add(procname(j)*(procname(n-j-2)+2*procname(n-j-3)+procname(n-j-4)), j=0..n-2)
end proc:
f(0):= 1: f(-1):= 0: f(-2):= 0:
seq(f(n), n=0..100); # Robert Israel, Mar 17 2015
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-4*(x+x^2)^2])/(2*(x+x^2)^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 17 2015 *)
PROG
(Maxima)
a(n):=sum((binomial(2*k, n-2*k-1)*binomial(2*k, k))/(k+1), k, floor((n-1)/4), n-1);
(PARI) default(seriesprecision, 50); Vec((1-sqrt(1-4*(x+x^2)^2))/(2*(x+x^2)^2) + O(x^50)); \\ Michel Marcus, Mar 17 2015
CROSSREFS
Cf. A000108.
Sequence in context: A292401 A132333 A182889 * A298405 A219788 A099965
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Mar 17 2015
STATUS
approved