This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256171 Number of ways to write n as the sum of three unordered generalized heptagonal numbers. 2
 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 1, 2, 1, 2, 3, 0, 1, 3, 1, 2, 3, 1, 1, 1, 1, 3, 3, 1, 2, 1, 2, 3, 1, 2, 4, 2, 1, 3, 2, 2, 3, 2, 1, 2, 2, 2, 3, 3, 2, 1, 2, 2, 3, 5, 2, 2, 2, 2, 3, 4, 2, 2, 4, 1, 3, 2, 1, 4, 3, 2, 2, 5, 2, 4, 3, 0, 4, 2, 1, 3, 6, 3, 3, 3, 1, 5, 2, 3, 5, 2, 2, 3, 3, 1, 5, 3, 1, 3, 3, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS Conjecture: (i) a(n) > 0 except for n = 10, 16, 76, 307. (ii) For any integer m > 2 not divisible by 4, each sufficiently large integer n can be written as the sum of three generalized m-gonal numbers. In 1994 R. K. Guy noted that none of 10, 16 and 76 can be written as the sum of three generalized heptagonal numbers. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 0..10000 R. K. Guy, Every number is expressible as the sum of how many polygonal numbers?, Amer. Math. Monthly 101 (1994), 169-172. Zhi-Wei Sun, A result similar to Lagrange's theorem, arXiv:1503.03743 [math.NT], 2015. EXAMPLE a(157) = 1 since 157 = 3*(5*3-3)/2 + (-3)*(5*(-3)-3)/2 + 7*(5*7-3)/2. a(748) = 1 since 748 = 0*(5*0-3)/2 + 0*(5*0-3)/2 + (-17)*(5*(-17)-3)/2. MATHEMATICA T[n_]:=Union[Table[x(5x-3)/2, {x, -Floor[(Sqrt[40n+9]-3)/10], Floor[(Sqrt[40n+9]+3)/10]}]] L[n_]:=Length[T[n]] Do[r=0; Do[If[Part[T[n], x]>n/3, Goto[aa]]; Do[If[Part[T[n], x]+2*Part[T[n], y]>n, Goto[bb]]; If[MemberQ[T[n], n-Part[T[n], x]-Part[T[n], y]]==True, r=r+1]; Continue, {y, x, L[n]}]; Label[bb]; Continue, {x, 1, L[n]}]; Label[aa]; Print[n, " ", r]; Continue, {n, 0, 100}] CROSSREFS Cf. A085787, A255934. Sequence in context: A287455 A216789 A097951 * A058643 A029368 A108483 Adjacent sequences:  A256168 A256169 A256170 * A256172 A256173 A256174 KEYWORD nonn AUTHOR Zhi-Wei Sun, Mar 17 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 17:07 EST 2019. Contains 319350 sequences. (Running on oeis4.)