

A256171


Number of ways to write n as the sum of three unordered generalized heptagonal numbers.


2



1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 1, 2, 1, 2, 3, 0, 1, 3, 1, 2, 3, 1, 1, 1, 1, 3, 3, 1, 2, 1, 2, 3, 1, 2, 4, 2, 1, 3, 2, 2, 3, 2, 1, 2, 2, 2, 3, 3, 2, 1, 2, 2, 3, 5, 2, 2, 2, 2, 3, 4, 2, 2, 4, 1, 3, 2, 1, 4, 3, 2, 2, 5, 2, 4, 3, 0, 4, 2, 1, 3, 6, 3, 3, 3, 1, 5, 2, 3, 5, 2, 2, 3, 3, 1, 5, 3, 1, 3, 3, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,9


COMMENTS

Conjecture: (i) a(n) > 0 except for n = 10, 16, 76, 307.
(ii) For any integer m > 2 not divisible by 4, each sufficiently large integer n can be written as the sum of three generalized mgonal numbers.
In 1994 R. K. Guy noted that none of 10, 16 and 76 can be written as the sum of three generalized heptagonal numbers.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 0..10000
R. K. Guy, Every number is expressible as the sum of how many polygonal numbers?, Amer. Math. Monthly 101 (1994), 169172.
ZhiWei Sun, A result similar to Lagrange's theorem, arXiv:1503.03743 [math.NT], 2015.


EXAMPLE

a(157) = 1 since 157 = 3*(5*33)/2 + (3)*(5*(3)3)/2 + 7*(5*73)/2.
a(748) = 1 since 748 = 0*(5*03)/2 + 0*(5*03)/2 + (17)*(5*(17)3)/2.


MATHEMATICA

T[n_]:=Union[Table[x(5x3)/2, {x, Floor[(Sqrt[40n+9]3)/10], Floor[(Sqrt[40n+9]+3)/10]}]]
L[n_]:=Length[T[n]]
Do[r=0; Do[If[Part[T[n], x]>n/3, Goto[aa]]; Do[If[Part[T[n], x]+2*Part[T[n], y]>n, Goto[bb]];
If[MemberQ[T[n], nPart[T[n], x]Part[T[n], y]]==True, r=r+1];
Continue, {y, x, L[n]}]; Label[bb]; Continue, {x, 1, L[n]}]; Label[aa]; Print[n, " ", r]; Continue, {n, 0, 100}]


CROSSREFS

Cf. A085787, A255934.
Sequence in context: A287455 A216789 A097951 * A058643 A029368 A108483
Adjacent sequences: A256168 A256169 A256170 * A256172 A256173 A256174


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Mar 17 2015


STATUS

approved



