login
A256108
Positions of nonzero digits in binary expansion of Pi.
5
-1, 0, 3, 6, 11, 12, 13, 14, 15, 16, 18, 19, 21, 23, 25, 29, 33, 38, 40, 41, 43, 47, 48, 53, 57, 58, 60, 63, 64, 68, 71, 72, 76, 77, 80, 81, 85, 87, 91, 93, 94, 95, 103, 104, 106, 107, 108, 114, 115, 116, 119, 120, 122, 126, 129, 131, 134, 141, 144, 147, 148, 149, 155, 159
OFFSET
1,3
COMMENTS
Nonzero entries in A004601 (re-indexed to start at -1 and ascend).
The binary positions (exponents) are negated for convenience (as is standard practice). By the results of the PiHex project, the number 1,000,000,000,000,060 (for example) eventually appears in this sequence. Submitted on 3/14/15, (decimal) Pi Day.
LINKS
Steve Pagliarulo, Stu's pi page: base 2
Colin Percival, PiHex Home Page
Wikipedia, PiHex
FORMULA
Pi = Sum_{n>=0} 2^(-a(n)).
This sequence A256108 = { i | A004601(1-i) = 1 }. - M. F. Hasler, Jul 27 2024
EXAMPLE
The most significant nonzero binary digit of pi occurs in the 2^1 position. Then there is a digit in the 2^0 position, then the 2^(-3) position, etc. Negate the exponents appearing to get this sequence.
MATHEMATICA
PositionIndex[First[RealDigits[Pi, 2, 200]]][1] - 2 (* Paolo Xausa, Aug 04 2024 *)
PROG
(PARI) A256108_upto(N)={localbitprec(N+20); [i-2|i<-[1..-20+#N=concat(binary(Pi))], N[i]]} \\ M. F. Hasler, Jul 27 2024
CROSSREFS
Cf. A004601 (Pi in base 2), A051480.
Sequence in context: A144562 A102889 A183543 * A028744 A028775 A223910
KEYWORD
sign,base
AUTHOR
David S. Metzler, Mar 14 2015
STATUS
approved