login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255939 Decimal expansion of a constant related to A000294. 1
2, 1, 3, 5, 9, 5, 1, 6, 0, 4, 7, 0, 7, 0, 0, 1, 8, 0, 1, 2, 8, 3, 4, 1, 2, 6, 2, 7, 2, 9, 1, 2, 5, 1, 2, 7, 8, 2, 0, 3, 2, 3, 4, 7, 7, 0, 6, 1, 2, 1, 8, 3, 4, 1, 8, 2, 8, 7, 8, 8, 5, 0, 5, 2, 6, 4, 4, 2, 0, 5, 6, 1, 0, 3, 4, 0, 4, 8, 4, 6, 8, 8, 1, 8, 7, 7, 1, 1, 8, 7, 2, 6, 0, 8, 6, 7, 0, 6, 2, 7, 2, 4, 2, 9, 7, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The unknown constant C from articles by Finch (p.2), resp. c3(m) by Mustonen and Rajesh (p.2).

LINKS

Table of n, a(n) for n=0..105.

Steven Finch, Integer Partitions, September 22, 2004, page 2. [Cached copy, with permission of the author].

Ville Mustonen and R. Rajesh, Numerical Estimation of the Asymptotic Behaviour of Solid Partitions of an Integer, J. Phys. A 36 (2003), no. 24, 6651-6659.

FORMULA

Equals Pi^(1/24) * exp(1/24 - Zeta(3) / (8*Pi^2) + 75*Zeta(3)^3 / (2*Pi^8)) / (A^(1/2) * 2^(157/96) * 15^(13/96)), where A = A074962 is the Glaisher-Kinkelin constant and Zeta(3) = A002117.

EXAMPLE

0.213595160470700180128341262729125127820323477061218341828788505264420561...

MATHEMATICA

RealDigits[Pi^(1/24) * E^(1/24 - Zeta[3]/(8*Pi^2) + 75*Zeta[3]^3/(2*Pi^8)) / (Glaisher^(1/2)*2^(157/96)*15^(13/96)), 10, 120][[1]]

CROSSREFS

Cf. A000294, A002117, A074962.

Sequence in context: A263047 A021828 A094341 * A333177 A169912 A316994

Adjacent sequences:  A255936 A255937 A255938 * A255940 A255941 A255942

KEYWORD

nonn,cons

AUTHOR

Vaclav Kotesovec, Mar 11 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 15 19:43 EDT 2021. Contains 342977 sequences. (Running on oeis4.)