OFFSET
1,1
COMMENTS
A is found by solving the equation A*x^2+3*A^2*x^3 = 3 or equivalently 3*A*x^2+(1-3*A)*x+2 = 0 where x = (-1+sqrt(1+4*A))/(2*A) in both equations. Using the quadratic formula, one can reduce this equation to solely sqrt(9*A^2-30*A+1)+3*sqrt(4*A+1) = 3*A+2.
Also, decimal expansion of (14+5*sqrt(10))/9.
FORMULA
( 14 + 5*sqrt(10) )/9.
EXAMPLE
3.31237647787132185111049641357373251873308...
PROG
(PARI) default(realprecision, 110); x=(14+5*sqrt(10))/9; for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", "))
(PARI) (14+5*sqrt(10))/9
CROSSREFS
KEYWORD
AUTHOR
Derek Orr, Mar 11 2015
STATUS
approved