login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255886
Number of orderings of the edges of the labeled complete graph K_n such that the graph induced by the first k edges is connected for every k=1,2,...,binomial(n,2).
1
1, 1, 6, 576, 2073600, 498161664000, 12385682950717440000, 45484508287062207627264000000, 33297304775599549535597153400913920000000, 6298496203530014357849150420174490961843322880000000000, 387030157006015555733158587399026951851936435957496524308480000000000000
OFFSET
1,3
FORMULA
For n>1, a(n) = binomial(n,2)! * 2^(n-2) / A000108(n-1).
MATHEMATICA
Join[{1}, Table[Binomial[n, 2]!*2^(n-2)*n/Binomial[2*n-2, n-1], {n, 2, 20}]] (* G. C. Greubel, Aug 03 2018 *)
PROG
(PARI) {a(n) = if( n<2, n>0, binomial(n, 2)! * 2^(n-2) * n / binomial(2*n-2, n-1))}; /* Michael Somos, Jul 23 2015 */
(Magma) [1] cat [Factorial(Binomial(n, 2))*2^(n-2)*n/Binomial(2*n-2, n-1): n in [2..20]]; // G. C. Greubel, Aug 03 2018
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Max Alekseyev, Mar 09 2015
STATUS
approved