Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Feb 16 2022 23:42:50
%S 1,1,6,576,2073600,498161664000,12385682950717440000,
%T 45484508287062207627264000000,
%U 33297304775599549535597153400913920000000,6298496203530014357849150420174490961843322880000000000,387030157006015555733158587399026951851936435957496524308480000000000000
%N Number of orderings of the edges of the labeled complete graph K_n such that the graph induced by the first k edges is connected for every k=1,2,...,binomial(n,2).
%H G. C. Greubel, <a href="/A255886/b255886.txt">Table of n, a(n) for n = 1..30</a>
%H Mathoverflow, <a href="http://mathoverflow.net/questions/199342">Probability of a graph procedure</a>.
%F For n>1, a(n) = binomial(n,2)! * 2^(n-2) / A000108(n-1).
%t Join[{1}, Table[Binomial[n, 2]!*2^(n-2)*n/Binomial[2*n-2, n-1], {n, 2, 20}]] (* _G. C. Greubel_, Aug 03 2018 *)
%o (PARI) {a(n) = if( n<2, n>0, binomial(n, 2)! * 2^(n-2) * n / binomial(2*n-2, n-1))}; /* _Michael Somos_, Jul 23 2015 */
%o (Magma) [1] cat [Factorial(Binomial(n,2))*2^(n-2)*n/Binomial(2*n-2,n-1): n in [2..20]]; // _G. C. Greubel_, Aug 03 2018
%Y Cf. A125205, A125206, A125207, A125208, A125209.
%K nonn,nice
%O 1,3
%A _Max Alekseyev_, Mar 09 2015