OFFSET
0,1
COMMENTS
This is the case k=5 of the form (n + sqrt(k))^2 + (n - sqrt(k))^2.
Equivalently, numbers m such that 2*m - 20 is a square.
LINKS
FORMULA
a(n) = 2*A117951(n).
From Vincenzo Librandi, Mar 08 2015: (Start)
G.f.: 2*(5 - 9*x + 6*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 28 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(5)*Pi*coth(sqrt(5)*Pi))/20.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(5)*Pi*cosech(sqrt(5)*Pi))/20. (End)
E.g.f.: 2*exp(x)*(5 + x + x^2). - Elmo R. Oliveira, Jan 25 2025
MATHEMATICA
Table[2 n^2 + 10, {n, 0, 50}]
PROG
(Magma) [2*n^2+10: n in [0..50]]; // Vincenzo Librandi, Mar 08 2015
(PARI) a(n)=2*n^2+10 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Avi Friedlich, Mar 08 2015
EXTENSIONS
Edited by Bruno Berselli, Mar 13 2015
STATUS
approved