login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A255845
a(n) = 2*n^2 + 10.
1
10, 12, 18, 28, 42, 60, 82, 108, 138, 172, 210, 252, 298, 348, 402, 460, 522, 588, 658, 732, 810, 892, 978, 1068, 1162, 1260, 1362, 1468, 1578, 1692, 1810, 1932, 2058, 2188, 2322, 2460, 2602, 2748, 2898, 3052, 3210, 3372, 3538, 3708, 3882, 4060, 4242, 4428
OFFSET
0,1
COMMENTS
This is the case k=5 of the form (n + sqrt(k))^2 + (n - sqrt(k))^2.
Equivalently, numbers m such that 2*m - 20 is a square.
FORMULA
a(n) = 2*A117951(n).
From Vincenzo Librandi, Mar 08 2015: (Start)
G.f.: 2*(5 - 9*x + 6*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 28 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(5)*Pi*coth(sqrt(5)*Pi))/20.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(5)*Pi*cosech(sqrt(5)*Pi))/20. (End)
E.g.f.: 2*exp(x)*(5 + x + x^2). - Elmo R. Oliveira, Jan 25 2025
MATHEMATICA
Table[2 n^2 + 10, {n, 0, 50}]
PROG
(Magma) [2*n^2+10: n in [0..50]]; // Vincenzo Librandi, Mar 08 2015
(PARI) a(n)=2*n^2+10 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Cf. A016825 (first differences), A117951.
Subsequence of A047463.
Cf. similar sequences listed in A255843.
Sequence in context: A051247 A242335 A050579 * A330971 A135988 A038527
KEYWORD
nonn,easy,changed
AUTHOR
Avi Friedlich, Mar 08 2015
EXTENSIONS
Edited by Bruno Berselli, Mar 13 2015
STATUS
approved