|
|
A117951
|
|
a(n) = n^2 + 5.
|
|
12
|
|
|
5, 6, 9, 14, 21, 30, 41, 54, 69, 86, 105, 126, 149, 174, 201, 230, 261, 294, 329, 366, 405, 446, 489, 534, 581, 630, 681, 734, 789, 846, 905, 966, 1029, 1094, 1161, 1230, 1301, 1374, 1449, 1526, 1605, 1686, 1769, 1854, 1941, 2030, 2121, 2214, 2309, 2406, 2505
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Ivan Panchenko, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Near-Square Prime
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
|
|
FORMULA
|
a(n) = 2*n + a(n-1) - 1 (with a(0)=5). - Vincenzo Librandi, Nov 13 2010
From Colin Barker, Apr 10 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (5-9*x+6*x^2)/(1-x)^3. (End)
|
|
MATHEMATICA
|
lst={}; Do[AppendTo[lst, n^2+5], {n, 0, 6!, 1}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 07 2008 *)
|
|
PROG
|
(sage) [lucas_number1(3, n, -5) for n in range(0, 51)] # Zerinvary Lajos, May 16 2009
(PARI) a(n)=n^2+5 \\ Charles R Greathouse IV, Apr 10 2012
|
|
CROSSREFS
|
For numbers n such that n^2 + 5 is prime, see A078402.
Sequence in context: A218735 A301658 A286338 * A328115 A327975 A227611
Adjacent sequences: A117948 A117949 A117950 * A117952 A117953 A117954
|
|
KEYWORD
|
nonn,easy,changed
|
|
AUTHOR
|
Eric W. Weisstein, Apr 04 2006
|
|
STATUS
|
approved
|
|
|
|