login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255733
Numbers x such that the sum of remainders of x mod k, where k runs through the anti-divisors of x, divides x.
0
3, 4, 6, 12, 26, 96, 137, 946, 1053, 2943, 6874, 17386, 39182, 60504, 114254, 167786, 393216, 497134, 645354, 5250086, 27914146, 448005874, 505235234, 708458286, 3238952914, 71258123714
OFFSET
1,1
COMMENTS
For a(7) = 137, a(9) = 1053 and a(10) = 2943 the ratio is 1.
a(27) > 10^11. - Hiroaki Yamanouchi, Mar 17 2015
EXAMPLE
The anti-divisors of 26 are 3, 4, 17.
26 mod 3 = 2; 26 mod 4 = 2; 26 mod 17 = 9; 2 + 2 + 9 = 13 and 26 / 13 = 2.
MAPLE
with(numtheory): P:=proc(q) local a, k, n;
for n from 3 to q do a:=0;
for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=a+(n mod k);
fi; od; if type(n/a, integer) then print(n); fi; od; end: P(10^6);
MATHEMATICA
f[n_] := Block[{ad}, ad[x_] := Cases[Range[2, x - 1], _?(Abs[Mod[x, #] - #/2] < 1 &)]; Plus @@ (Mod[n, #] & /@ ad@ n)]; Select[Range@ 5000, Mod[#, f@ #] == 0 &] (* Michael De Vlieger, Mar 05 2015 *)
PROG
(PARI) isok(n) = (n % sum(k=2, n-1, (n % k)*(abs((n % k)-k/2) < 1))) == 0; \\ Michel Marcus, Mar 06 2015
CROSSREFS
Cf. A066272.
Sequence in context: A160684 A176045 A350299 * A137333 A006719 A202855
KEYWORD
nonn,more
AUTHOR
Paolo P. Lava, Mar 05 2015
EXTENSIONS
a(13)-a(26) from Hiroaki Yamanouchi, Mar 17 2015
STATUS
approved