This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176045 Numbers n such that n-1 and 2*n-1 are both prime. 2
 3, 4, 6, 12, 24, 30, 42, 54, 84, 90, 114, 132, 174, 180, 192, 234, 240, 252, 282, 294, 360, 420, 432, 444, 492, 510, 594, 642, 654, 660, 684, 720, 744, 762, 810, 912, 954, 1014, 1020, 1032, 1050, 1104, 1224, 1230, 1290, 1410, 1440, 1452, 1482, 1500, 1512, 1560 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Also numbers n such that all eigenvalues of the n X n matrix M_n defined in A176043 are prime. The eigenvalues are 2*n-1, and n-1 with multiplicity n-1. a(n)^2 = p^2 + q, where both p and q are primes. These are the only squares of this form, and which always yields q > p with a(n) - 1 = p = A005384(n) and 2*a(n) - 1 = q = A005385(n), for the same n. Also: a(n) = q - p; p + q + a(n) = 2q = A194593(n+1); and p*q = A156592  - Richard R. Forberg, Mar 04 2015 LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 FORMULA a(n) = A005384(n)+1. a(n) = 2*A124485(n-1) for n > 1. EXAMPLE 6-1 = 5 and 2*6-1 = 11 are both prime, so 6 is in the sequence. 7-1 = 6 and 2*7-1 = 13 are not both prime, so 7 is not in the sequence. p = 3, q = 7; p^2 + q = 16, a(n) = sqrt(16) = 4. - Richard R. Forberg, Mar 04 2015 MAPLE with(numtheory):for n from 2 to 2000 do:if type((2*n-1), prime)=true and type((n-1), prime)=true then print(n):else fi:od: MATHEMATICA Select[Prime[Range], PrimeQ[2#+1]&]+1 (* Harvey P. Dale, Jul 31 2013 *) PROG (MAGMA) [ n: n in [2..1600] | IsPrime(n-1) and IsPrime(2*n-1) ]; // Klaus Brockhaus, Apr 19 2010 (PARI) isok(n) = isprime(n-1) && isprime(2*n-1); \\ Michel Marcus, Apr 06 2016 CROSSREFS Cf. A176043, A005384 (Sophie Germain primes), A005385 (Safe Primes),  A124485 (2*n-1 and 4*n-1 are prime). Sequence in context: A095765 A095016 A160684 * A255733 A137333 A006719 Adjacent sequences:  A176042 A176043 A176044 * A176046 A176047 A176048 KEYWORD nonn AUTHOR Michel Lagneau, Apr 07 2010 EXTENSIONS Edited and 1482 inserted by Klaus Brockhaus, Apr 19 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 14 04:56 EST 2019. Contains 329110 sequences. (Running on oeis4.)