login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers x such that the sum of remainders of x mod k, where k runs through the anti-divisors of x, divides x.
0

%I #17 Mar 19 2015 08:42:10

%S 3,4,6,12,26,96,137,946,1053,2943,6874,17386,39182,60504,114254,

%T 167786,393216,497134,645354,5250086,27914146,448005874,505235234,

%U 708458286,3238952914,71258123714

%N Numbers x such that the sum of remainders of x mod k, where k runs through the anti-divisors of x, divides x.

%C For a(7) = 137, a(9) = 1053 and a(10) = 2943 the ratio is 1.

%C a(27) > 10^11. - _Hiroaki Yamanouchi_, Mar 17 2015

%e The anti-divisors of 26 are 3, 4, 17.

%e 26 mod 3 = 2; 26 mod 4 = 2; 26 mod 17 = 9; 2 + 2 + 9 = 13 and 26 / 13 = 2.

%p with(numtheory): P:=proc(q) local a,k,n;

%p for n from 3 to q do a:=0;

%p for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=a+(n mod k);

%p fi; od; if type(n/a,integer) then print(n); fi; od; end: P(10^6);

%t f[n_] := Block[{ad}, ad[x_] := Cases[Range[2, x - 1], _?(Abs[Mod[x, #] - #/2] < 1 &)]; Plus @@ (Mod[n, #] & /@ ad@ n)]; Select[Range@ 5000, Mod[#, f@ #] == 0 &] (* _Michael De Vlieger_, Mar 05 2015 *)

%o (PARI) isok(n) = (n % sum(k=2, n-1, (n % k)*(abs((n % k)-k/2) < 1))) == 0; \\ _Michel Marcus_, Mar 06 2015

%Y Cf. A066272.

%K nonn,more

%O 1,1

%A _Paolo P. Lava_, Mar 05 2015

%E a(13)-a(26) from _Hiroaki Yamanouchi_, Mar 17 2015