The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A255733 Numbers x such that the sum of remainders of x mod k, where k runs through the anti-divisors of x, divides x. 0

%I #17 Mar 19 2015 08:42:10

%S 3,4,6,12,26,96,137,946,1053,2943,6874,17386,39182,60504,114254,

%T 167786,393216,497134,645354,5250086,27914146,448005874,505235234,

%U 708458286,3238952914,71258123714

%N Numbers x such that the sum of remainders of x mod k, where k runs through the anti-divisors of x, divides x.

%C For a(7) = 137, a(9) = 1053 and a(10) = 2943 the ratio is 1.

%C a(27) > 10^11. - _Hiroaki Yamanouchi_, Mar 17 2015

%e The anti-divisors of 26 are 3, 4, 17.

%e 26 mod 3 = 2; 26 mod 4 = 2; 26 mod 17 = 9; 2 + 2 + 9 = 13 and 26 / 13 = 2.

%p with(numtheory): P:=proc(q) local a,k,n;

%p for n from 3 to q do a:=0;

%p for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=a+(n mod k);

%p fi; od; if type(n/a,integer) then print(n); fi; od; end: P(10^6);

%t f[n_] := Block[{ad}, ad[x_] := Cases[Range[2, x - 1], _?(Abs[Mod[x, #] - #/2] < 1 &)]; Plus @@ (Mod[n, #] & /@ ad@ n)]; Select[Range@ 5000, Mod[#, f@ #] == 0 &] (* _Michael De Vlieger_, Mar 05 2015 *)

%o (PARI) isok(n) = (n % sum(k=2, n-1, (n % k)*(abs((n % k)-k/2) < 1))) == 0; \\ _Michel Marcus_, Mar 06 2015

%Y Cf. A066272.

%K nonn,more

%O 1,1

%A _Paolo P. Lava_, Mar 05 2015

%E a(13)-a(26) from _Hiroaki Yamanouchi_, Mar 17 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 19:57 EDT 2024. Contains 373486 sequences. (Running on oeis4.)