login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255309
Number of times log_2 can be applied to n until the result is either 1 or not a power of 2. Here log_2 means the base-2 logarithm.
3
0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0,5
LINKS
FORMULA
a(n) = 1 + a(log_2(n)) if n is a power of 2 except 1, 0 otherwise.
PROG
(PARI) nbi(n) = {my(nb = 0); if ((ispower(n, , &m) && (m==2)) || (n==2), return(nbi(valuation(n, 2))+1); ); nb; }
a(n) = { my(nb = 0); if ((ispower(n, , &m) && (m==2)) || (n==2), return(nbi(valuation(n, 2))+1); ); nb; } \\ Michel Marcus, Mar 11 2015; corrected Jun 13 2022
(PARI) A255309(n) = { my(k=0); while((n>1)&&!bitand(n, n-1), n = valuation(n, 2); k++); (k); }; \\ Antti Karttunen, Sep 30 2018
CROSSREFS
Cf. A000079 (2^n), A007814 (2-adic valuation of n), A209229, A255308.
Sequence in context: A072325 A294929 A076948 * A335446 A376514 A335460
KEYWORD
nonn,easy
AUTHOR
Paul Boddington, Feb 20 2015
EXTENSIONS
Extended up to a(128) by Antti Karttunen, Sep 30 2018
STATUS
approved