login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255244
Numbers that divide the average of the sum of the squares of their divisors.
2
1, 65, 175, 1105, 5425, 20737, 32045, 70525, 103685, 171275, 200725, 207553, 352529, 372775, 1037765, 1198925, 1264957, 1347905, 1762645, 1824877, 2609425, 2698189, 3628975, 3928475, 4966975, 6324785, 6337175, 8646625, 8813225, 9124385, 10223341, 12774139, 13490945
OFFSET
1,2
LINKS
Chai Wah Wu and Giovanni Resta, Table of n, a(n) for n = 1..328 (terms < 10^12, first 82 terms from Chai Wah Wu)
EXAMPLE
Divisors of 65 are 1, 5, 13, 65. The average of the sum of their squares is (1^2 + 5^2 + 13^2 + 65^2) / 4 = (1 + 25 + 169 + 4225) / 4 = 4420 / 4 = 1105 and 1105 / 65 = 17.
MAPLE
with(numtheory); P:=proc(q) local a, b, k, n;
for n from 2 to q do a:=divisors(n);
b:=add(a[k]^2, k=1..nops(a))/nops(a);
if type(b/n, integer) then lprint(n);
fi; od; end: P(10^6);
MATHEMATICA
Select[Range[10^6], Mod[Mean[Divisors[#]^2], #]==0&] (* Ivan N. Ianakiev, Mar 03 2015 *)
PROG
(PARI) isok(n) = (q=sumdiv(n, d, d^2)/numdiv(n)) && (type(q)=="t_INT") && ((q % n) == 0); \\ Michel Marcus, Feb 20 2015
(Python)
from __future__ import division
from sympy import factorint
A255244_list = []
for n in range(1, 10**9):
....s0 = s2 = 1
....for p, e in factorint(n).items():
........s0 *= e+1
........s2 *= (p**(2*(e+1))-1)//(p**2-1)
....q, r = divmod(s2, s0)
....if not (r or q % n):
........A255244_list.append(n) # Chai Wah Wu, Mar 08 2015
CROSSREFS
Sequence in context: A044397 A044778 A054902 * A261989 A051968 A242318
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Feb 20 2015
EXTENSIONS
More terms from Michel Marcus, Feb 20 2015
a(31)-a(33) corrected by Chai Wah Wu, Mar 08 2015
STATUS
approved