login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255194
Numbers n such that prime(n) + {1,2,3,4,5,6} are all products of three primes.
2
369, 8788, 16456, 20522, 23335, 53601, 77047, 97930, 100123, 120745, 127847, 139723, 152996, 217177, 230179, 250248, 264618, 304656, 325478, 418592, 452277, 495518, 523028, 574110, 600888, 609574, 615102, 619844, 638584, 716516, 722010, 749479, 789769, 810082, 858158, 901322, 928090, 940735, 999329
OFFSET
1,1
EXAMPLE
prime(369) + {1,2,3,4,5,6} = {2522,2523,2524,2525,2526,2527} = {2*13*97, 3*29*29, 2*2*631, 5*5*101, 2*3*421, 7*19*19} - all products of 3 primes (A014612).
MATHEMATICA
Reap[Do[If[Union[PrimeOmega[Prime[n] + {1, 2, 3, 4, 5, 6}]] == {3},
Sow[n]], {n, 10^6}]][[2, 1]]
PROG
(Python)
from sympy import factorint, nextprime
A255194_list, p, p2 = [], 2, 3
for n in range(1, 10**6):
....if p2 - p > 6:
........for i in range(1, 7):
............fs = factorint(p+i)
............if len(fs) > 3 or sum(list(fs.values())) != 3:
................break
........else:
............A255194_list.append(n)
....p, p2 = p2, nextprime(p2) # Chai Wah Wu, Mar 01 2015
CROSSREFS
Cf. A014612.
Sequence in context: A205903 A237844 A255202 * A108772 A224562 A276413
KEYWORD
nonn
AUTHOR
Zak Seidov, Feb 16 2015
STATUS
approved